ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ

(12)

(54)

РЕСПУБЛИКА БЕЛАРУСЬ

НАЦИОНАЛЬНЫЙ ЦЕНТР ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ

- (19) **BY** (11) **17994**
- (13) **C1**
- (46) 2014.02.28
- (51) MIIK

C 08L 9/02 (2006.01) *C 08K 13/02* (2006.01)

СПОСОБ ИЗГОТОВЛЕНИЯ РЕЗИНОВОЙ СМЕСИ ДЛЯ ПРОИЗВОДСТВА УПЛОТНИТЕЛЕЙ

- (21) Номер заявки: а 20120358
- (22) 2012.03.12
- (43) 2013.10.30
- (71) Заявитель: Учреждение образования "Белорусский государственный технологический университет" (ВҮ)
- (72) Авторы: Долинская Раиса Моисеевна; Свидерская Татьяна Дмитриевна; Прокопчук Николай Романович (ВҮ)
- (73) Патентообладатель: Учреждение образования "Белорусский государственный технологический университет" (ВҮ)
- (56) EP 1672016 A1, 2006. JP 2008-163067 A. US 2002/0082333 A1. EP 0812879 A1, 1997. RU 2437903 C2, 2011. RU 2425851 C1, 2011.

(57)

Способ изготовления резиновой смеси для производства уплотнителей, заключающийся в том, что на обогреваемых вальцах смешивают бутадиен-нитрильный каучук БНКС-18АН, кремнегель, серу техническую молотую, тиазол, дифенилгуанидин, белила цинковые, диафен ФП, ацетонанил Р, дибутилфталат, кислоту стеариновую, углерод технический П-803, углерод технический П-324 и ангидрид фталевый при следующем соотношении компонентов, мас.ч.:

бутадиен-нитрильный каучук БНКС-18 АН	100,0
кремнегель	5,0-20,0
сера техническая молотая	2,6
тиазол	3,0
дифенилгуанидин	0,2
белила цинковые	7,7
диафен ФП	1,0
ацетонанил Р	1,0
дибутилфталат	30,0
кислота стеариновая	1,0
углерод технический П-803	110,0
углерод технический П-324	10,0
ангидрид фталевый	0,7,

после чего осуществляют вулканизацию смеси в гидравлическом прессе при температуре 160 ± 3 °C и давлении 10-15 МПа в течение 10 мин с последующим охлаждением под давлением.

Изобретение относится к резиновой промышленности, а именно к способу изготовления формовых резинотехнических изделий.

Известны эластомерные композиции для изготовления уплотнительных изделий для гидравлических и пневматических устройств на основе гидрированного диенового полимера [1]. Вулканизаты, полученные из данной резиновой смеси, не удовлетворяют требованиям, предъявляемым к уплотнителям по стойкости к действию повышенных температур.

Наиболее близким к предлагаемому способу изготовления резиновой смеси по технической сущности и достигаемому результату является способ изготовления резиновой смеси на основе бутадиен-нитрильного и акрилатного каучуков для производства резинотехнических изделий [2]. Уплотнители, изготовленные из такой резиновой смеси, обладают пониженными прочностью, относительным удлинением при разрыве, стойкостью к действию повышенных температур.

Задачей предлагаемого изобретения является разработка способа изготовления резиновой смеси для производства уплотнительных изделий для гидравлических и пневматических устройств с повышенными масло- и бензостойкостью, улучшенными эксплуатационными свойствами, износостойкостью и сроком службы уплотнителей.

Для решения поставленной задачи предложен способ изготовления резиновой смеси для производства уплотнителей, заключающийся в том, что на обогреваемых вальцах смешивают бутадиен-нитрильный каучук БНКС-18АН, кремнегель, серу техническую молотую, тиазол, дифенилгуанидин, белила цинковые, диафен ФП, ацетонанил Р, дибутилфталат, кислоту стеариновую, углерод технический П-803, углерод технический П-324 и ангидрид фталевый при следующем соотношении компонентов, мас. ч:

1	*
бутадиен-нитрильный каучук БНКС-18АН	100,0
кремнегель	5,0-20,0
сера техническая молотая	2,6
тиазол	3,0
дифенилгуанидин	0,2
белила цинковые	7,7
диафен ФП	1,0
ацетонанил Р	1,0
дибутилфталат	30,0
кислота стеариновая	1,0
углерод технический П-803	110,0
углерод технический П-324	10,0
ангидрид фталевый	0,7,

после чего осуществляют вулканизацию смеси в гидравлическом прессе при температуре 160 ± 3 °C и давлении 10-15 МПа в течение 10 мин с последующим охлаждением под давлением.

Основной особенностью бутадиен-нитрильного каучука является наличие полярных нитрильных групп, которые придают ему специфические свойства: стойкость к действию масел и алифатических углеводородов, повышенную теплостойкость.

При выборе типа технического углерода учитывали кислотность поверхности наполнителя. Поэтому в качестве наполнителя был выбран печной технический углерод марок П-324 (активный) и П-803 (малоактивный) (ГОСТ 7885-86), значения рН водной суспензии которого составляет 7-9.

Для улучшения распределения ингредиентов в каучуковой матрице и устранения прилипания каучука и смесей на его основе к вальцам применяли обычный диспергатор стеариновую кислоту (ГОСТ 6484-96) в количестве 1,0 мас. ч. на 100,0 мас. ч. каучука.

Тиазол - ускоритель средней активности - обеспечивает широкое плато вулканизации. В составе композиции в качестве замедлителя вулканизации использовали ангидрид фталевый. Сера - вулканизующий агент. Белила цинковые - активатор ускорителя вулканизации.

Кремнегель - модификатор.

Дифенилгуанидин используется в качестве вторичного ускорителя в сочетании с тиазолами и сульфенамидами в резиновых смесях на основе синтетических каучуков, ускоритель средней активности.

Стабилизатор диафен ФП хорошо защищает резины от теплового старения, повышает выносливость при многократных деформациях. Особенно эффективно защищает статически и динамически напряженные резины от атмосферного старения. Ацетонанил Р является также стабилизатором вулканизации в производстве резинотехнических изделий. Дибутилфталат применяется как пластификатор.

Изобретение поясняется выполнением конкретных примеров.

Пример 1 (см. таблицу образец 1).

На обогреваемые лабораторные вальцы ЛВ 320 160/160 загружают каучук (100 мас. ч.) и обрабатывают до тех пор, пока он не перестанет проскальзывать на валках, потом модификатор кремнегель (5,0 мас. ч.), затем вводят 1/3 наполнителей и стеариновую кислоту; затем вводят 2/3 наполнителей, потом пластификатор дибутилфталат (30,0 мас. ч.), дифенилгуанидин, белила цинковые, диафен $\Phi\Pi$, ацетонанил P, ангидрид фталевый (0,7 мас. ч.); в конце вводят серу (2,6 мас. ч.) и тиазол (3,0 мас. ч.).

Вулканизацию образцов осуществляли в гидравлическом прессе в пресс-формах при температурах 160 ± 3 °C и давлении 10-15 МПа в течение 10 мин с последующим охлаждением под давлением.

Физико-механические показатели композиций определяли по методикам ГОСТ, соответствующим этим показателям: условная прочность при растяжении, относительное удлинение при разрыве, маслостойкость, озоностойкость и стойкость к воздействию УФлучей (до появления первых трещин).

Пример 2 (см. таблицу образец 2).

На обогреваемые лабораторные вальцы ЛВ 320 160/160 загружают каучук (100 мас. ч.) и обрабатывают до тех пор, пока он не перестанет проскальзывать на валках, потом модификатор кремнегель (10,0 мас. ч.), затем вводят 1/3 наполнителей и стеариновую кислоту; затем вводят 2/3 наполнителей, потом пластификатор дибутилфталат (30,0 мас. ч.), дифенилгуанидин, белила цинковые, диафен ФП, ацетонанил P, ангидрид фталевый (0,7 мас. ч.); в конце вводят серу (2,6 мас. ч.) и тиазол (3,0 мас. ч.).

Вулканизацию образцов осуществляли в гидравлическом прессе в пресс-формах при температурах 160 ± 3 °C и давлении 10-15 МПа в течение 10 мин с последующим охлаждением под давлением.

Физико-механические показатели композиций определяли по методикам ГОСТ, соответствующим этим показателям: условная прочность при растяжении, относительное удлинение при разрыве, маслостойкость, озоностойкость и стойкость к воздействию УФлучей (до появления первых трещин).

Пример 3 (см. таблицу образец 3).

На обогреваемые лабораторные вальцы ЛВ 320 160/160 загружают каучук (100 мас. ч.) и обрабатывают до тех пор, пока он не перестанет проскальзывать на валках, потом модификатор кремнегель (15,0 мас. ч.), затем вводят 1/3 наполнителей и стеариновую кислоту; затем вводят 2/3 наполнителей, потом пластификатор дибутилфталат (30,0 мас. ч.), дифенилгуанидин, белила цинковые, диафен $\Phi\Pi$, ацетонанил P, ангидрид фталевый (0,7 мас. ч.); в конце вводят серу (2,6 мас. ч.) и тиазол (3,0 мас. ч.).

Вулканизацию образцов осуществляли в гидравлическом прессе в пресс-формах при температурах 160 ± 3 °C и давлении 10-15 МПа в течение 10 мин с последующим охлаждением под давлением.

Физико-механические показатели композиций определяли по методикам ГОСТ, соответствующим этим показателям: условная прочность при растяжении, относительное удлинение при разрыве, маслостойкость, озоностойкость и стойкость к воздействию УФлучей (до появления первых трещин).

Пример 4 (см. таблицу образец 4).

На обогреваемые лабораторные вальцы ЛВ 320 160/160 загружают каучук (100 мас. ч.) и обрабатывают до тех пор, пока он не перестанет проскальзывать на валках, потом модификатор кремнегель (20,0 мас. ч.), затем вводят 1/3 наполнителей и стеариновую кислоту; затем вводят 2/3 наполнителей, потом пластификатор дибутилфталат (30,0 мас. ч.), дифенилгуанидин, белила цинковые, диафен ФП, ацетонанил P, ангидрид фталевый (0,7 мас. ч.); в конце вводят серу (2,6 мас. ч.) и тиазол (3,0 мас. ч.).

Вулканизацию образцов осуществляли в гидравлическом прессе в пресс-формах при температурах 160 ± 3 °C и давлении 10-15 МПа в течение 10 мин с последующим охлаждением под давлением.

Физико-механические показатели композиций определяли по методикам ГОСТ, соответствующим этим показателям: условная прочность при растяжении, относительное удлинение при разрыве, маслостойкость, озоностойкость и стойкость к воздействию УФлучей (до появления первых трещин).

Составы заявляемой смеси и результаты испытаний в сравнении с прототипом представлены в таблице.

Из данных таблицы видно, что предлагаемое изобретение по сравнению с прототипом обладает улучшенными физико-механическими показателями:

условная прочность при растяжении, МПа 17,5-18,6 (у прототипа - 14) относительное удлинение при разрыве, % 410-470 (у прототипа - 340)

маслостойкость, $\% \pm 1,0 \div 1,5$ (у прототипа - 2)

озоностойкость, (выдержал/не выдержал) 48 ч выдержал (у прототипа 24 ч не выдержал)

стойкость к действию УФ-лучей, (до появления первых трещин) 48 ч выдержал (у прототипа - 24 ч не выдержал).

Состав и физико-механические показатели заявляемой смеси и прототипа

		Образцы			
	Прототип	1	2	3	4
Каучук бутадиен-нитрильный (БНКС-18АН)	60,0	100,0	100,0	100,0	100,0
Акрилатный каучук	40,0	-	-	-	-
Кремнегель	-	5,0	10,0	15,0	20,0
Сера техническая молотая	2,6	2,6	2,6	2,6	2,6
Тиазол	3,0	3,0	3,0	3,0	3,0
Дифенилгуанидин	0,2	0,2	0,2	0,2	0,2
Белила цинковые	7,7	7,7	7,7	7,7	7,7
Диафен ФП	1,0	1,0	1,0	1,0	1,0
Ацетонанил Р	1,0	1,0	1,0	1,0	1,0
Дибутилфталат	30,0	30,0	30,0	30,0	30,0
Кислота стеариновая	1,0	1,0	1,0	1,0	1,0
Углерод технический П-803	110,0	110,0	110,0	110,0	110,0
Углерод технический П-324	10,0	10,0	10,0	10,0	10,0
Ангидрид фталевый	0,7	0,7	0,7	0,7	0,7

Физико-механические показатели

Условная прочность при растяжении, МПа	14,0	18,6	18,3	17,5	17,5	
Относительное удлинение при разрыве, %	340	470	450	410	410	
Маслостойкость, %	- 2	$\pm 1,0 \div 1,5$				
Озоностойкость (выдержал/не выдержал)	24 ч не выдержал	48 ч выдержал	48 ч выдержал	48 ч выдер- жал	48 ч выдержал	
Воздействие УФ-лучей (до появления первых трещин)	24 ч не выдержал	48 ч выдержал	48 ч выдержал	48 ч выдер- жал	48 ч выдержал	

Данное изобретение может быть использовано для уплотнения гидравлических и пневматических устройств в автомобилестроении не только в Республике Беларусь, но и в России, Латвии и других странах СНГ.

Источники информации:

- 1. Заявка ЕПВ 1980589, МПК С 08 L 15/00, 2008.
- 2. Заявка ЕПВ 1672016, МПК С 08 L 13/00, 2006 (прототип).