УДК 630*377.4

С. А. Голякевич, кандидат технических наук, ассистент (БГТУ);

С. П. Мохов, кандидат технических наук, доцент, заведующий кафедрой (БГТУ);

А. Р. Гороновский, кандидат технических наук, доцент, проректор по воспитательной работе (БГТУ);

С. Н. Пищов, кандидат технических наук, доцент (БГТУ);

С. Е. Арико, кандидат технических наук, ассистент (БГТУ)

МЕТОДИКА И ОЦЕНКА ЭФФЕКТИВНОСТИ ЭКСПЛУАТАЦИИ ПОГРУЗОЧНО-ТРАНСПОРТНОЙ МАШИНЫ В УСЛОВИЯХ РЕСПУБЛИКИ БЕЛАРУСЬ

Разработана методика оценки эффективности применения форвардера в условиях лесозаготовительных предприятий Республики Беларусь. Проведена сравнительная оценка существующей погрузочно-транспортной машины МЛПТ-354 и проектируемой по основным показателям эксплуатационных затрат. Исследовано влияние среднего объема хлыста и длины сортиментов на производительность рассматриваемых машин и удельные эксплуатационные затраты.

The technique of evaluating the effectiveness of the application forwarder under lesozago-tovitelnyh Belarusian enterprises. A comparative evaluation exist-ing cargo transport machine MLPT-354 and projected on the main indicators of operational costs. The influence of average volume and length of logs on the performance of our machines and unit operating costs.

Введение. В настоящее время широкое распространение на рубках главного и промежуточного пользования получили погрузочнотранспортные машины (форвардеры). В Республике Беларусь преобладающий их объем составляют отечественные лесные машины, которые обладают различными эксплуатационными свойствами. Это позволяет повысить эффективность проведения рубок леса за счет выбора погрузочно-транспортной машины, имеющей минимальные удельные эксплуатационные затраты [1, 2].

Основная часть. Исходными данными для приведения расчета являются результаты теоретических исследований работы погрузочнотранспортной машины грузоподъемностью 7 т с улучшенными техническими характеристиками и опыт эксплуатации аналогичной техники в условиях лесозаготовительных предприятий Республики Беларусь. Экономический эффект при работе форвардера достигается за счет повышения грузоподъемности, выбора рациональных приемов работы и возможности совмещения операций при погрузке сортиментов.

Временные и энергетические затраты на выполнение технологических операций форвардера определялись с использованием разработанной математической модели. Расчеты проведены в ценах по состоянию на 18 ноября 2013 г. При оценке эффективности сравнивались существующая погрузочно-транспортная машина МЛПТ-354 и проектируемая, грузоподъемности которых составляют 5 и 7 т соответственно. Показатели и условия эксплуатации, характеризующие сравниваемые варианты, приведены в табл. 1.

Объем заготовленной древесины $V_{\rm cm}$, м³, и расход топлива $Q_{\rm cm}$ кг, для форвардера за одну рабочую смену определись выражениями:

$$V_{\text{cm}} = V_{\phi} \cdot (T - t_{\text{p}}) \cdot k_{\text{ucn}} / T_{\text{u}}^{\phi};$$

$$Q_{\text{cm}} = Q_{\text{u}}^{\phi} \cdot (T - t_{\text{p}}) \cdot k_{\text{ucn}} / T_{\text{u}}^{\phi};$$

где V_{Φ} — объем древесины, который будет вывезен форвардером за один рейс, м³; T — продолжительность смены, с; $t_{\rm p}$ — регламентируемые простои, с; $t_{\rm p}$ = 5200 с в смену; $T_{\rm q}^{\Phi}$ — время, затраченное на выполнение операций по сбору и транспортировке сортиментов объемом $V_{\rm n}$, с; $Q_{\rm q}^{\Phi}$ — расход топлива за цикл работы форвардера, кг.

Таблица 1 **Условия эксплуатации форвардеров**

	Погрузочно-				
	транспортные				
Показатель	машины				
TIORASATCIB		Проекти-			
	МЛПТ-354	руемый			
		вариант			
Грузоподъемность, т	5	7			
Среднее расстояние трелевки, м	500	500			
Продолжительность смены, ч	8	8			
Коэффициент использования					
рабочего времени	0,85	0,85			
Количество рабочих смен в					
году	543	543			
Количество основных рабо-					
чих, чел.	1	1			
Период эксплуатации, лет	5	5			
Заработная плата оператора					
в час, тыс. руб.	58	58			

10.1

Показатели работы погрузочно-транспортных машин											
Мощность, затрачиваемая на выполнение операции	<i>N</i> ₁ , кВт	<i>N</i> ₂ , кВт	<i>N</i> ₃ , кВт	N ₄₋₆ , кВт	<i>N</i> ₇ , кВт	<i>N</i> ₈ , кВт	<i>N</i> ₉ , кВт	N ₁₀₋₁₂ , кВт	N ₁₃₋₁₄ , кВт	N ₁₅ , кВт	N ₁₆ , кВт
МЛПТ-354	16,7	8,1	5	25	5	8,1	10	25	66,1	75,9	69,4
Проектируемый вариант	34	1,2	5	25	5	8,1	10	25	70,2	80,6	69,4
Время выполнения операции	<i>t</i> ₁ , c	<i>t</i> ₂ , c	<i>t</i> ₃ , c	<i>t</i> ₄₋₆ , c	<i>t</i> ₇ , c	<i>t</i> ₈ , c	<i>t</i> ₉ , c	t_{0-12} , c	<i>t</i> ₁₃ , c	<i>t</i> ₁₄ , c	<i>t</i> ₅ , c
МППТ-354	6.4	6.8	9.1	6.7	3	6.8	9.1	6.7	151	252	336

Таблица 2

Таблица 3

332

199

Эксплуатационные затраты погрузочно-транспортных машин

9.1

H	Погрузочно-транспортные машины					
Наименование показателей и расчетная формула	МЛПТ-354	Проектируемый вариант				
Заработная плата рабочих с учетом начислений, руб.	464 000					
Балансовая стоимость форвардера, тыс. руб.	1 395 000	1 442 000				
Затраты:						
на амортизацию, руб.	513 812	531 123				
горюче-смазочные материалы, руб.	498 775	461 495				
текущий ремонт, руб.	336 000					
перебазировку машин, руб.	379 374					
Прочие неучтенные расходы приняты в размере 10% от суммы предыдущих эксплуатационных затрат, руб.						
Всего эксплуатационных затрат, руб.	2 411 157	2 389 191				
Объем заготавливаемой древесины в смену, м ³	50,34	55,67				
Удельные эксплуатационные затраты, руб./м ³	47 899	42 917				

Суммарное время цикла форвардера $T_{\mathfrak{u}}^{\,\,\phi}$, с, определялось по формуле [3]

МЛПТ-354

Проектируемый вариант

$$T_{\text{II}}^{\Phi} = \frac{V_{\Phi}}{V_{\text{II}}} \sum_{i=1}^{12} t_i^{\Phi} + \sum_{i=13}^{16} t_i^{\Phi},$$

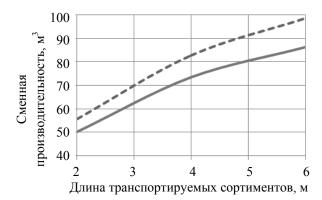
где $V_{\rm n}$ — объем поднимаемых манипулятором сфртиментов за один прием, м³ ($V_{\rm n}$ = 0,25 м³); t_1^{ϕ} – время подъема одной пачки сортиментов манипулятором, с; t_2^{ϕ} – время поворота манипулятора до уровня погрузочной площадки, с; t_3^{Φ} — время укладки пачки сортиментов на погрузочную площадку, с; $t_4^{\Phi}-t_6^{\Phi}$ — продолжительность обратных холосты ходов, с; $t_7^{\Phi}-t_{12}^{\Phi}$ продолжительность аналогичных операций на разгрузке сортиментов в штабель на погрузочном пункте, с; t_{13}^{ϕ} , t_{14}^{ϕ} – время перемещения форвардера при наборе пачек сортиментов при их погрузке и разгрузке соответственно, $c; t_{15}^{\phi}, t_{16}^{\phi}$ – время движения форвардера в груженом состоянии на погрузочный пункт и обратного холостого хода на лесосеку соответственно, с.

Цикловой расход топлива Q_{μ} , кг, рассчитывался по зависимости [3]:

$$Q_{\mathbf{I}}^{\phi} = \frac{\left(\frac{V_{\phi}}{V_{\mathbf{I}}}\sum_{i=1}^{12}N_{i}^{\phi}t_{i}^{\phi} + \sum_{i=13}^{17}N_{i}^{\phi}t_{i}^{\phi}\right) \cdot \mathbf{g}_{e}}{1000 \cdot 3600}.$$

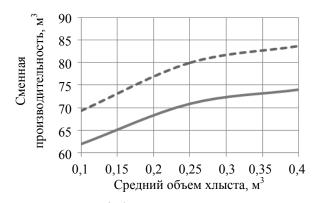
Указанные временные и энергетические затраты на выполнение технологических операций форвардера определялись с использованием разработанной математической модели. Рассчитанные значения приведены в табл. 2. В табл. 3 представлены расчеты эксплуатационных затрат по сравниваемым вариантам.

Годовой экономический эффект каждой машины рассчитывается по формуле [1, 2, 3]


$$\mathfrak{I}_{\Gamma} = (C_1 - C_2) \cdot \Pi_{\Gamma},$$

где C_1 и C_2 – удельные эксплуатационные затраты по вариантам, тыс. руб.; $\Pi_{_{\Gamma}}$ – годовой объем работ, м³.

Для проектируемой погрузочно-транспортной машины ожидаемый годовой экономический эффект от внедрения рекомендаций составит 150 299 тыс. руб.


Следует отметить, что производительность погрузочно-транспортной машины изменяется в широком диапазоне в зависимости от длины транспортируемых сортиментов и среднего объема хлыста (рис. 1, 2) [2, 3].

В первую очередь это связано с тем, что с увеличением длины сортиментов требуется меньше затрат времени на сбор транспортируемой пачки, так как при этом грейфер будет перемещать больший объем сортиментов за один цикл.

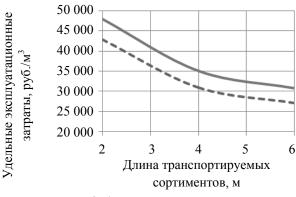

МЛПТ-354Проектируемая погрузочно-транспортная машина

Рис. 1. Изменение производительности погрузочно-транспортной машины от длины транспортируемых сортиментов

МЛПТ-354Проектируемая погрузочно-транспортная машина

Рис. 2. Изменение производительности погрузочно-транспортной машины от среднего объема хлыста

МЛПТ-354Проектируемая погрузочно-транспортная машина

Рис. 3. Изменение удельных эксплуатационных затрат погрузочно-транспортной машины от длины транспортируемых сортиментов

Также сократится количество циклов погрузки, разгрузки и переездов машины. Так, увеличение длины сортиментов с 2 до 6 м приводит к повышению производительности погрузочно-транспортной машины в 1,7–1,8 раза и снижению себестоимости заготовки 1 м³ древесины на 15–18 тыс. руб. (рис. 3), или 35–38%.

Средний объем хлыста влияет на объемный выход сортиментов определенной длины. Причем при его величине в $0,1\,\mathrm{m}^3$ преобладающее количество сортиментов будет иметь длину $2\,\mathrm{m}$, а при объеме $0,4\,\mathrm{m}^3-4\,\mathrm{m}$ и $6\,\mathrm{m}$. С увеличением среднего объема хлыста повышается средняя рейсовая нагрузка и производительность (рис. 2), что способствует снижению себестоимости заготавливаемой лесопродукции.

Заключение. В соответствии с проведенными исследованиями установлено, что эффективность применения погрузочно-транспортных машин в значительной степени зависит от природно-производственных условий работы, технических характеристик и эксплуатационных свойств лесной машины. Выполненные расчеты показали, что проектируемую машину целесообразно применять на рубках промежуточного пользования, а также постепенных рубках главного пользования на грунтах 1-3 типов с соблюдением экологических требований к лесозаготовительной технике согласно СТБ 1342-2002 «Устойчивое лесоуправление и лесопользование. Машины для рубок леса. Общие технические требования». Ожидаемый экономический эффект от внедрения погрузочно-транспортной машины грузоподъемностью 7 т в условиях Республики Беларусь составляет 150,3 млн. руб.

Литература

- 1. Пищов С. Н. Применение движителя комбинированного типа для повышения тяговосцепных свойств лесных погрузочно-транспортных машин: дис. ... канд. техн. наук: 05.21.01. Минск, 2008. 156 л.
- 2. Арико, С. Е. Обоснование параметров валочно-сучкорезно-раскряжевочной машины для рубок промежуточного лесопользования: дис. ... канд. техн. наук: 05.21.01. Минск, 2012. 225 л.
- 3. Голякевич, С. А. Повышение надежности несущих конструкций многооперационных лесозаготовительных машин выбором режимов работы на основе энергетического потенциала: дис. ... канд. техн. наук: 05.21.01. Минск, 2013. 184 л.

Поступила 17.02.2014