УДК 54-165:544.022+536.413+537.31/32

Е. А. Чижова, кандидат химических наук, доцент (БГТУ); А. И. Клындюк, кандидат химических наук, доцент (БГТУ); Н. В. Брушко, студент (БГТУ); А. С. Мазько, студент (БГТУ)

## КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА И ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА ТВЕРДЫХ РАСТВОРОВ МУЛЬТИФЕРРОИКОВ Ві<sub>1-х</sub>Nd<sub>x</sub>Fe<sub>1-x</sub>Mn<sub>x</sub>O<sub>3</sub>

Твердофазным методом получены керамические образцы твердых растворов ферритов  $Bi_{1-x}Nd_xFe_{1-x}Mn_xO_3$  (0,0 <  $x \le 0,21$ ), изучены их кристаллическая структура, тепловое расширение, электропроводность и термо-ЭДС. Показано, что в образцах с 0,06  $\le x \le 0,21$  наблюдается сосуществование ромбоэдрически и орторомбически искаженных фаз перовскитов. Установлено, что оксиды  $Bi_{1-x}Nd_xFe_{1-x}Mn_xO_3$  являются полупроводниками *p*-типа, электропроводность которых возрастала, а коэффициент термо-ЭДС слабо изменялся с ростом *x*.

The ceramic samples of the ferrites  $Bi_{1-x}Nd_xFe_{1-x}Mn_xO_3$  (0,0 <  $x \le 0,21$ ) solid solutions using solidstate reactions method were prepared and their crystal structure, thermal expansion, electrical conductivity and thermo-EMF were studied. It was shown that in the samples with 0,06 ≤  $x \le 0,21$  the coexistence of rhombohedrally and orthorhombically distorted perovskite phases were observed. It was found, that  $Bi_{1-x}Nd_xFe_{1-x}Mn_xO_3$  oxides were the *p*-type semiconductors which electrical conductivity values increased but thermo-EMF coefficient ones slightly changed at *x* increasing.

Введение. Перспективной основной для разработки мультиферроиков нового поколения, способных найти широкое применение в различных областях - от спинтроники и фотоники до медицины [1] – является перовскитный феррит висмута BiFeO<sub>3</sub>, что обусловлено высокими значениями температур антиферромагнитного ( $T_N = 643$  K) и сегнетоэлектрического упорядочения ( $T_C = 1083$  К) [1]. Однако интенсивность магнитоэлектрических взаимодействий в объемных образцах феррита висмута невелика, так как антиферромагнитная структура BiFeO<sub>3</sub> циклоидально модулирована и несоразмерна его кристаллической структуре. В таких фазах отсутствует линейный магнитоэлектрический эффект, а имеет место только квадратичный, величина которого намного меньше линейного. Разрушение несоразмерной магнитной структуры феррита висмута может быть достигнуто воздействием на него высоких давлений [1], а также путем частичного замещения катионов  $Fe^{3+}$  [2] или  $Bi^{3+}$  [3] в его структуре.

Целью настоящей работы явилось исследование влияния одновременного замещения ионов висмута ионами неодима, а ионов железа ионами марганца в структуре перовскитоподобного феррита висмута на его кристаллическую структуру, тепловое расширение, электропроводность и термо-ЭДС.

Методика эксперимента. Керамические образцы твердых растворов ферритов  $Bi_{1-x}Nd_xFe_{1-x}Mn_xO_3$  (0,0 <  $x \le 0,21$ ) получали из оксидов  $Bi_2O_3$  (ч.),  $Nd_2O_3$  (ос.ч.),  $Mn_2O_3$  (ос.ч.) и  $Fe_2O_3$  (ч.д.а.) твердофазным методом на воздухе в течение 8 ч при температуре 1073 К.

Идентификацию образцов и определение параметров их кристаллической структуры

проводили при помощи рентгенофазового анализа (РФА) (рентгеновский дифрактометр D8 Advance Bruker AXS (Германия), СиК<sub>α</sub>.излучение) и ИК-спектроскопии поглощения (Фурье-спектрометр Nexus фирмы ThermoNicolet).

Кажущуюся плотность образцов ( $\rho_{3ксп}$ ) находили по их массе и геометрическим размерам. Тепловое расширение, удельную электропроводность ( $\sigma$ ) и термо-ЭДС (S) керамики изучали на воздухе в интервале температур 300–1100 К (в случае термического расширения 300–760 К) по методикам, описанным в [4–6]. Значения температурных коэффициентов линейного расширения (ТКЛР,  $\alpha$ ), а также энергии активации электропроводности ( $E_A$ ) и термо-ЭДС ( $E_S$ ) образцов находили из линейных участков зависимостей  $\Delta l / l_0 = f(T)$ ,  $\ln(\sigma T) =$ = f(1 / T) и S = f(1 / T) соответственно.

Результаты и их обсуждение. На дифрактограммах синтезированных образцов  $Bi_{1-x}Nd_xFe_{1-x}Mn_xO_3$  наблюдались рефлексы примесных фаз –  $Bi_{25}FeO_{39}$  (силленит) и  $Bi_2Fe_4O_9$  (муллит), количества которых были максимальны для составов с  $0,03 \le x \le 0,09$  (рис. 1, *a*). Полученные нами результаты согласуются с литературными данными [7, 8], согласно которым твердофазным методом образцы однофазного перовскитного феррита висмута получить практически невозможно; ввиду затрудненности переноса оксида висмута через слой продукта – BiFeO<sub>3</sub> – реакция

$$Bi_2O_{3,TB} + Fe_2O_{3,TB} = 2BiFeO_{3,TB}$$

протекает не до конца: наряду с продуктом реакции – перовскитом BiFeO<sub>3</sub> – в реакционной смеси остается некоторое количество полупродуктов – богатого оксидом висмута силленита  $Bi_{25}FeO_{39}$  и богатого оксидом железа муллита  $Bi_2Fe_4O_9$  [8]. Увеличение времени или температуры обжига не позволяет решить проблему, поскольку приведет либо к обеднению шихты  $Bi_2O_3$  вследствие его ухода в газовую фазу, либо к перитектическому плавлению BiFeO<sub>3</sub> – образующаяся керамика в обоих случаях будет обогащаться муллитом ( $Bi_2Fe_4O_9$ ) [7].

Как видно из рис. 1,  $\delta$ , твердый раствор с x = 0,03 имел ромбоэдрически искаженную структуру перовскита (структура BiFeO<sub>3</sub>), а в образцах с  $0,06 \le x \le 0,21$ , согласно данным РФА, наблюдалось сосуществование ромбоэдрической (про-

странственная группа симметрии R3c) и орторомбической (пространственная группа симметрии *Pnma*) фаз перовскитов Bi<sub>1-x</sub>Nd<sub>x</sub>Fe<sub>1-x</sub>Mn<sub>x</sub>O<sub>3</sub>, причем с ростом *x* содержание орторомбической фазы увеличивалось. Подобный морфотропный переход наблюдался в системе BiFeO<sub>3</sub> – PrCoO<sub>3</sub> [9].

Как видно из рис. 1, с ростом степени замещения висмута неодимом, а железа маарганцем пики на дифрактограммах порошков  $Bi_{1-x}Nd_xFe_{1-x}Mn_xO_3$  смещались в сторону больших углов, что свидетельствует о том, что размеры элементарной ячейки твердых растворов уменьшались с ростом x (табл. 1).



Рис. 1. Рентгеновские дифрактограммы порошков Bi<sub>1-x</sub>Nd<sub>x</sub>Fe<sub>1-x</sub>Mn<sub>x</sub>O<sub>3</sub>

Таблица 1

Значения параметров кристаллической ячейки (*a*, *b*, *c*, *V*), параметра перовскитной ячейки (*a<sub>p</sub>*), а также кажущейся плотности (ρ<sub>каж</sub>) твердых растворов Bi<sub>1-x</sub>Nd<sub>x</sub>Fe<sub>1-x</sub>Mn<sub>x</sub>O<sub>3</sub>

|      |                              | r |        |               |        |                            |                                   |                                         |
|------|------------------------------|---|--------|---------------|--------|----------------------------|-----------------------------------|-----------------------------------------|
| x    | Структура<br>(пр. гр. симм.) | Ζ | а, нм  | <i>b</i> , нм | С, НМ  | <i>V</i> , нм <sup>3</sup> | <i>а</i> <sub><i>p</i></sub> , нм | ρ <sub>каж</sub> ,<br>г/см <sup>3</sup> |
| 0,0  | R(R3c)                       | 6 | 0,5576 | _             | 1,386  | 0,3733                     | 0,3962                            | 4,87                                    |
| 0,03 | R(R3c)                       | 6 | 0,5580 | _             | 1,385  | 0,3734                     | 0,3963                            | 4,60                                    |
| 0,06 | R(R3c)                       | 6 | 0,5577 | _             | 1,383  | 0,3727                     | 0,3961                            | 4,67                                    |
|      | O (Pnma)                     | 4 | 0,5601 | 0,7881        | 0,5588 | 0,2467                     | 0,3951                            |                                         |
| 0,09 | R(R3c)                       | 6 | 0,5574 | -             | 1,379  | 0,3713                     | 0,3956                            | 4,23                                    |
|      | O (Pnma)                     | 4 | 0,5597 | 0,7893        | 0,5589 | 0,2469                     | 0,3952                            |                                         |
| 0,12 | R(R3c)                       | 6 | 0,5571 | _             | 1,367  | 0,3677                     | 0,3924                            | 3,97                                    |
|      | O (Pnma)                     | 4 | 0,5570 | 0,7889        | 0,5570 | 0,2448                     | 0,3941                            |                                         |
| 0,15 | R(R3c)                       | 6 | 0,5558 | -             | 1,377  | 0,3684                     | 0,3945                            | 3,70                                    |
|      | O (Pnma)                     | 4 | 0,5578 | 0,7846        | 0,5582 | 0,2443                     | 0,3938                            |                                         |
| 0,18 | R(R3c)                       | 6 | 0,5538 | _             | 1,362  | 0,3616                     | 0,3921                            | 3,49                                    |
|      | O (Pnma)                     | 4 | 0,5559 | 0,7871        | 0,5529 | 0,2419                     | 0,3925                            |                                         |
| 0,21 | R(R3c)                       | 6 | 0,5531 | _             | 1,360  | 0,3603                     | 0,3916                            | 3,37                                    |
|      | O (Pnma)                     | 4 | 0,5556 | 0,7872        | 0,5517 | 0,2413                     | 0,3922                            |                                         |

На ИК-спектрах поглощения твердых растворов  $Bi_{1-x}Nd_xFe_{1-x}Mn_xO_3$  с  $0.0 < x \le 0.09$ (рис. 2), аналогично спектру BiFeO<sub>3</sub>, наблюдалось четыре линии поглощения с максимумами при 540–553 см<sup>-1</sup> (v<sub>1</sub>), 438–440 см<sup>-1</sup> (v<sub>2</sub>), 384–  $389 \text{ см}^{-1}$  (v<sub>3</sub>),  $358-359 \text{ см}^{-1}$  (v<sub>4</sub>), что свидетельствует о том, что в данных образцах преобладает ромбоэдрически искаженная фаза перовскита. Полосы поглощения v1 и v2 отвечают, согласно [10], колебаниям связей Fe-O. На ИКспектрах с 0,15 ≤ x ≤ 0,21 наблюдалось лишь две линии поглощения с максимумами при 559-561 и 388-401 см<sup>-1</sup>, что говорит о том, что в этих твердых растворах преобладает орторомбически искаженная фаза перовскита. Как видно из рис. 2, положения экстремумов полос поглощения с ростом х смещаются в сторону больших волновых чисел, из чего следует, что частичное замещение висмута неодимом и железа марганцем приводит к увеличению энергии взаимодействия металл – кислород в структуре твердых растворов Bi<sub>1-x</sub>Nd<sub>x</sub>Fe<sub>1-x</sub>Mn<sub>x</sub>O<sub>3</sub>. Результаты ИК-спектроскопии поглощения хорошо согласуются с данными РФА, согласно которым параметры элементарной ячейки оксидов Bi<sub>1-x</sub>Nd<sub>x</sub>Fe<sub>1-x</sub>Mn<sub>x</sub>O<sub>3</sub> уменьшаются с ростом x (табл. 1).

Т x = 0.21561 401 x = 0.18559 393 561 388 x = 0.15555 x = 0.12382 368 440 553 x = 0.09389359 x = 0.06140 552 389358 x = 0.0340 385 359 552 438 540  $384_{350330} x = 0.00$ 800 600 400 v, см<sup>-1</sup>

Рис. 2. ИК-спектры поглощения Bi<sub>1-x</sub>Nd<sub>x</sub>Fe<sub>1-x</sub>Mn<sub>x</sub>O<sub>3</sub>

Как видно из табл. 1, кажущаяся плотность образцов с увеличением степени замещения

висмута неодимом, а железа марганцем в структуре BiFeO<sub>3</sub> в целом уменьшалась и для твердых растворов с преобладанием ромбоэдрической фазы (4,23–4,87 г/см<sup>3</sup>) была заметно больше плотности образцов, в которых преобладала орторомбически искаженная фаза перовскита (3,37–3,70 г/см<sup>3</sup>).

Температурный коэффициент линейного расширения составил  $\approx 13 \cdot 10^{-6} \text{ K}^{-1}$  для образцов с преобладанием ромбоэдрической фазы и  $(10-11) \cdot 10^{-6} \text{ K}^{-1}$  для образцов, в которых преобладала орторомбическая фаза (табл. 2). Для образца состава Bi<sub>0,88</sub>Nd<sub>0,12</sub>Fe<sub>0,88</sub>Mn<sub>0,12</sub>O<sub>3</sub> TKЛР имел промежуточное значение 12,2  $\cdot 10^{-6} \text{ K}^{-1}$ .

Таблица 2

Температурный коэффициент линейного расширения ( $\alpha$ ) и энергии активации процесса электропереноса ( $E_A$ ,  $E_S$ ,  $E_m = E_A - E_S$ ) Bi<sub>1-x</sub>Nd<sub>x</sub>Fe<sub>1-x</sub>Mn<sub>x</sub>O<sub>3</sub>

| x    | $\alpha \cdot 10^{6}$ , K <sup>-1</sup> | <i>Е</i> <sub><i>A</i></sub> , эВ | <i>Еs</i> , эВ | <i>Е</i> <sub><i>m</i></sub> , эВ |
|------|-----------------------------------------|-----------------------------------|----------------|-----------------------------------|
| 0,03 | 12,8                                    | 0,948                             | 0,076          | 0,872                             |
| 0,06 | 13,0                                    | 0,696                             | 0,081          | 0,615                             |
| 0,09 | 13,3                                    | 0,655                             | 0,071          | 0,584                             |
| 0,12 | 12,2                                    | 0,563                             | 0,078          | 0,485                             |
| 0,15 | 10,0                                    | 0,547                             | 0,080          | 0,467                             |
| 0,18 | 10,0                                    | 0,504                             | 0,088          | 0,416                             |
| 0,21 | 11,7                                    | 0,512                             | 0,074          | 0,438                             |

Полученные нами материалы Bi<sub>1-r</sub>Nd<sub>r</sub>Fe<sub>1-r</sub>Mn<sub>r</sub>O<sub>3</sub> являлись полупроводниками ( $\partial \sigma / \partial T > 0$ ) *p*-типа (S > 0), электропроводность которых возрастала (рис. 3), а коэффициент термо-ЭДС слабо изменялся с ростом х и для всех исследованных твердых растворов был значительно ниже, для незамещенного феррита висмучем та BiFeO<sub>3</sub>. При этом температурная зависимость коэффициента термо-ЭДС для образца Ві<sub>0.97</sub>Nd<sub>0.03</sub>Fe<sub>0.97</sub>Mn<sub>0.03</sub>O<sub>3</sub>, как и для базовой фазы, проходила через максимум вблизи 900 К, а для образцов с  $0.06 \le x \le 0.12$  на зависимости коэффициента Зеебека от температуры наблюдался минимум в интервале температур 800-900 К. Для всех остальных образцов коэффициент термо-ЭДС монотонно уменьшался с ростом температуры.

Удельная электропроводность образцов  $Bi_{1-x}Nd_xFe_{1-x}Mn_xO_3$  при увеличении температуры от 300 до 1100 К возрастала примерно на 6 порядков от  $\sigma_{300} = 9.8 \cdot 10^{-8}$  См  $\cdot$  см<sup>-1</sup> до  $\sigma_{1100} = 8.6 \cdot 10^{-2}$  См  $\cdot$  см<sup>-1</sup> для  $Bi_{0.94}Nd_{0.06}Fe_{0.94}Mn_{0.06}O_3$ .

Для веществ с поляронным характером переноса заряда, к которым относятся изученные в настоящей работе оксиды  $Bi_{1-x}Nd_xFe_{1-x}Mn_xO_3$ , температурные зависимости электропроводно-

сти и термо-ЭДС описываются соотношениями  $\sigma = (A/T) \cdot \exp(-E_A/kT), S = (k/e) \cdot [(-E_S/kT) + B],$  где  $E_A = (E_S + E_m)$  и  $E_S$  – энергии активации электропроводности и термо-ЭДС, причем  $E_S$  отвечает энергии возбуждения полярона, а  $E_m$  – энергии его переноса (при  $E_m > 0$  перенос заряда термически активирован и осуществляется поляронами малого радиуса (ПМР) по прыжковому механизму) [11].



Рис. 3. Концентрационные зависимости удельной электропроводности (σ), энергии активации проводимости (*E<sub>A</sub>*) и логарифма предэкспоненциального множителя (lnσ<sub>0</sub>)

Как видно из приведенных в табл. 2 значений  $E_A$ ,  $E_S$  и  $E_m$ , носителями заряда в Ві<sub>1-х</sub>Nd<sub>x</sub>Fe<sub>1-x</sub>Mn<sub>x</sub>O<sub>3</sub> являлись поляроны малого радиуса. Значения энергии активации электропроводности ( $E_A$ ), определенные из линейных участков зависимостей  $\ln(\sigma T) = f(1/T)$ , снижались при увеличении степени замещения висмута неодимом, а железа марганцем (рис. 3, табл. 2). Энергия активации переноса поляронов малого радиуса, в целом, возрастала при уменьшении x, в то время как величина энергии их возбуждения изменялась немонотонно и для всех образцов была ниже  $E_m$ .

Заключение. Таким образом, в настоящей работе изучена кристаллическая структура, тепловое расширение, электропроводность и термо-ЭДС синтезированных керамическим методом твердых растворов  $\text{Bi}_{1-x}\text{Nd}_x\text{Fe}_{1-x}\text{Mn}_x\text{O}_3$  $(0,0 < x \le 0,21)$ . Установлено, что твердый раствор с x = 0,03 имел ромбоэдрически искаженную структуру перовскита (структура BiFeO<sub>3</sub>), а в образцах с  $0,06 \le x \le 0,21$  наблюдалось сосуществование ромбоэдрической и орторомбической фаз перовскитов  $\text{Bi}_{1-x}\text{Nd}_x\text{Fe}_{1-x}\text{Mn}_x\text{O}_3$ , причем с ростом степени замещения содержание орторомбической фазы увеличивалось. Показано, что оксиды  $\text{Bi}_{1-x}\text{Nd}_x\text{Fe}_{1-x}\text{Mn}_x\text{O}_3$  являлись полупроводниками *p*-типа, электропроводность которых возрастала, а коэффициент термо-ЭДС слабо изменялся с ростом *x*. Энергия активации проводимости, как и энергия переноса ПМР, падала с ростом степени замещения висмута неодимом, а железа марганцем.

Работа выполнена при поддержке Белорусского республиканского фонда фундаментальных исследований (грант X13-005).

## Литература

1. Пятаков А. П., Звездин А. К. Магнитоэлектрические материалы и мультиферроики // Успехи физических наук. 2012. Т. 182, № 6. С. 593-620.

2. Kumar A., Yadav K. L. The effect of Ni substitution on magnetic, dielectric and magnetoelectric properties in  $BiFe_{1-x}Ni_xO_3$  system // Physica B: Condensed Matter. 2010. Vol. 405, Iss. 22. P. 4650–4654.

3. Structural stability and magnetic properties of  $Bi_{1-x}La(Pr)_xFeO_3$  solid solutions / I. O. Troyanchuk [et al.] // Solid State Communications. 2011. Vol. 151. P. 1686–1689.

4. Клындюк А. И. Термоэлектрические свойства слоистых феррокупратов LnBaCuFeO<sub>5+ $\delta$ </sub> (Ln = La, Pr, Nd, Sm, Gd–Lu) // Физика твердого тела. 2009. Т. 51, вып. 2. С. 237–241.

5. Термоэлектрические свойства некоторых перовскитных оксидов / А. И. Клындюк [и др.] // Термоэлектричество. 2009. № 3. С. 76–84.

6. Клындюк А. И., Чижова Е. А. Свойства фаз RBaCuFeO<sub>5+δ</sub> (R – Y, La, Pr, Nd, Sm–Lu) // Неорганические материалы. 2006. Т. 42, № 5. С. 611–622.

7. Особенности образования BiFeO<sub>3</sub> в смеси оксидов висмута и железа (III) / М. И. Морозов [и др.] // Журнал общей химии. 2003. Т. 73, вып. 11. С. 1772–1776.

8. Reaction pathways in the solid state synthesis of multiferroic  $BiFeO_3 / M$ . S. Bernardo [et al.] // J. of the European Ceramic Society. 2011. Vol. 31. P. 3047–3053.

9. Синтез, структура и свойства твердых растворов в квазибинарной системе BiFeO<sub>3</sub> – PrCoO<sub>3</sub> / A. И. Клындюк [и др.] // Весці НАН Беларусі. Сер. хім. навук. 2012. № 4. С. 5–9.

10. Anapu Reddy V., Pathak N. P., Nath R. Particle size dependent magnetic properties and phase transitions in multiferroic  $BiFeO_3$  nanoparticles // J. of Alloys and Compounds. 2012. Vol. 543. P. 206–212.

11. Мотт Н., Дэвис Э. Электронные процессы в некристаллических веществах. М.: Мир, 1982. 368 с.

9

Поступила 25.02.2014