УДК 537.622

А. А. Затюпо, кандидат химических наук, ассистент (БГТУ);

Л. А. Башкиров, доктор химических наук, профессор (БГТУ);

Т. А. Шичкова, кандидат химических наук, доцент (БГТУ);

Г. Г. Эмелло, кандидат химических наук, доцент (БГТУ)

СИНТЕЗ СЕГНЕТОМАГНЕТИКА ВІFeO3 ИЗ ПРЕКУРСОРА Ві25FeO39 И ОКСИДА Fe2O3

Разработан керамический метод синтеза сегнетомагнетика BiFeO₃ из прекурсора $Bi_{25}FeO_{39}$ и оксида Fe_2O_3 . Изучено влияние различных режимов термообработки на кристаллическую структуру BiFeO₃ и выбраны наиболее оптимальные условия синтеза. Предложенный метод позволил уменьшить температуру и время синтеза по сравнению с условиями керамического метода синтеза BiFeO₃ из оксидов Bi_2O_3 и Fe_2O_3 , а также снизить количество примесных фаз с 5 до 3%.

The ceramic method of synthesis of BiFeO₃ multiferroic from $Bi_{25}FeO_{39}$ precursor and Fe_2O_3 oxide was developed. Influence of various modes of heat treatment on crystal structure of BiFeO₃ is studied and the optimum conditions of synthesis are chosen. The method offered allows to reduce synthesis temperature and time in comparison with ceramic method of BiFeO₃ synthesis from Bi_2O_3 and Fe_2O_3 oxides, and also allows to reduce the quantity of impurity phases from 5 to 3%.

Введение. Феррит висмута BiFeO₃ является одним из наиболее перспективных соединений, на основании которого разрабатывают новые магнитоэлектрические материалы, обладающие высокими значениями электрической поляризации и намагниченности при комнатной температуре. Связь между магнитной и электрической подсистемами в сегнетомагнетиках, проявляющаяся в виде магнитоэлектрических эффектов, предоставляет возможность с помощью электрического поля управлять магнитными свойствами материала и, наоборот, осуществлять модуляцию электрических свойств магнитным полем. Это позволяет на основе этих соединений разрабатывать принципиально новые устройства магнитной памяти и спинтроники, сенсоры магнитного поля, устройства записи и считывания информации и др. [1-4]. Несмотря на то что синтез и свойства феррита висмута BiFeO₃ исследованы достаточно широко, получение однофазного образца BiFeO3 попрежнему представляет серьезную проблему.

О невозможности получения BiFeO₃ без примесных соединений парамагнитного Bi25FeO39 и антиферромагнитного Bi₂Fe₄O₉ при взаимодействии оксидов висмута (III) и железа (III) свидетельствуют и многочисленные литературные данные [5-8]. По мнению ряда авторов, образование примесных побочных продуктов Bi₂₅FeO₃₉ и Bi₂Fe₄O₉ происходит не только при твердофазном методе синтеза, но и при получении феррита висмута по золь-гель технологии. Уже при температуре 600°С полученный золь-гель методом феррит висмута проявляет термодинамическую неустойчивость, и длительная тепловая обработка приводит к разложению BiFeO₃ на Bi₂Fe₄O₉ и Bi₂₅FeO₃₉ согласно реакции 49BiFeO₃ \rightarrow 12Bi₂Fe₄O₉ + Bi₂₅FeO₃₉. Чтобы не допустить в процессе синтеза BiFeO3

из оксидов формирования фазы $Bi_2Fe_4O_9$, твердофазные реакции проводят с большим избытком Bi_2O_3 [9]. Однако и в этом случае присутствуют примеси $Bi_2Fe_4O_9$ и $Bi_{25}FeO_{39}$, которые не исчезают даже после дополнительной термообработки или в результате выщелачивания феррита висмута в разбавленной азотной кислоте [9].

Авторами работы предложен твердофазный метод синтеза сегнетомагнетика BiFeO₃ из прекурсора Bi₂₅FeO₃₉ и оксида Fe₂O₃ и подобраны оптимальные условия получения конечного продукта.

Основная часть. Для решения поставленной цели необходимо было выполнить следующие задачи:

– синтезировать твердофазным методом прекурсор Bi₂₅FeO₃₉ из оксидов Bi₂O₃ и Fe₂O₃;

– получить твердофазным методом образец феррита висмута $BiFeO_3$ из полученного ранее прекурсора $Bi_{25}FeO_{39}$ и оксида Fe_2O_3 ;

 изучить влияние различных режимов термообработки на кристаллическую структуру BiFeO₃ и наличие примесных фаз.

Рентгеновские дифрактограммы получали на дифрактометре D8 ADVANCE с использованием CuK_{α}-излучения. Параметры кристаллической структуры определяли при помощи рентгеноструктурного табличного процессора RTP и данных картотеки международного центра дифракционных данных (ICDD JCPDS).

Предварительно методом твердофазных реакций был осуществлен синтез прекурсора Bi₂₅FeO₃₉ из оксидов Bi₂O₃ и Fe₂O₃. Порошки исходных соединений, взятых в заданных молярных соотношениях, смешивали и мололи на протяжении 30 мин в планетарной мельнице с добавлением этанола. Полученную шихту с добавлением этанола прессовали под давлением 50–75 МПа в таблетки диаметром 25 мм и высотой 5–7 мм, которые затем обжигали при 750°С на воздухе в течение 4 ч.

Осуществлен рентгенофазовый анализ полученного образца $Bi_{25}FeO_{39}$, результаты которого приведены на рис. 1.

Установлено, что полученный образец Ві₂₅FeO₃₉ являлся однофазным и имел кубическую кристаллическую структуру силленита (пр. гр. *I23*) с параметрами кристаллической решетки a = 10,1911(3) Å, V = 1058,430(105) Å³, которые хорошо согласуются с литературными данными (a = 10,18120 Å, V = 1055,350 Å³) [10].

Из литературных источников известно, что при 790°С происходит плавление эвтектики в системе Bi₂O₃ - Fe₂O₃, при 850°C - структурный фазовый переход BiFeO₃, при 950°С – инконгруэнтное плавление BiFeO₃, что косвенно указывает на то, что образование соединения $BiFeO_3$ при нагревании смеси порошков Bi_2O_3 и Fe₂O₃ происходит при температурах ниже 850°С [11]. Данные дифференциального термического анализа [11] и кинетические исследования [5] показывают, что реакция в эквимолярной смеси Bi₂O₃ + Fe₂O₃ носит сложный характер. Ниже 675°С реакция не проходит до конца, при температурах выше 675°С ВіFeO₃ разлагается медленно, а при температурах выше 830°С разлагается быстро с выделением Bi₂Fe₄O₉ [5, 7].

С учетом вышесказанного был осуществлен твердофазный синтез BiFeO₃ при температуре 750°С в течение 4 ч по реакции

$$Bi_{25}FeO_{39} + 12Fe_2O_3 \rightarrow 25BiFeO_3.$$

После предварительного обжига таблетки феррита Bi₂₅FeO₃₉ дробили в агатовой ступке и перемалывали в планетарной мельнице на протяжении 30 мин с добавлением этанола и смешивали в заданных пропорциях с оксидом железа Fe_2O_3 . Полученную шихту с добавлением этанола прессовали под давлением 50–75 МПа в таблетки диаметром 25 мм и высотой 5–7 мм, которые затем обжигали при 750°С на воздухе в течение 4 ч. На рис. 2 представлена рентгеновская дифрактограмма полученного образца BiFeO₃.

Анализ дифрактограммы (рис. 2) показал, что образец феррита имел кристаллическую структуру ромбоэдрического перовскита. Вместе с этим на рентгенограмме присутствовали небольшие рефлексы примесных фаз, в частности, следы антиферромагнитной фазы муллита $Bi_{25}Fe_4O_9$ и парамагнитной фазы силленита $Bi_{25}FeO_{39}$. Это указывает на то, что данные условия синтеза также не позволили избежать присутствия примесных фаз.

В связи с этим синтезированный образец ВіFeO₃ был дополнительно обожжен при следующих режимах: І – 750°С, 2 ч; II – 800°С, 2 ч; III – 750°С, 4 ч. Дифрактограммы полученных образцов представлены на рис. 3. Для сравнения полученных данных на этом же рисунке представлена также дифрактограмма образца феррита висмута, синтезированного твердофазным методом из соответствующих оксидов [12].

Установлено, что дифрактограммы образцов, полученных по режимам I и III, различаются мало, но при этом увеличение времени дополнительной тепловой обработки при температуре 750°С приводит к незначительному росту содержания примесей. Это, вероятно, связано с разложением феррита висмута BiFeO₃ на Bi₂Fe₄O₉ и Bi₂₅FeO₃₉ по реакции:

$$49\text{BiFeO}_3 \rightarrow 12\text{Bi}_2\text{Fe}_4\text{O}_9 + \text{Bi}_{25}\text{FeO}_{39}.$$

Сравнение дифрактограмм образцов, полученных по режимам I и II, позволило в свою очередь установить, что увеличение температуры обжига от 750 до 800° С (при том же времени термообработки) приводит к значительному снижению количества примесей. Таким образом, из трех режимов дополнительной термообработки наиболее оптимальным является режим II ($T = 800^{\circ}$ С и время 2 ч).

Следует отметить, что предложенный метод получения BiFeO₃ из прекурсора Bi₂₅FeO₃₉ и оксида Fe₂O₃ позволил также уменьшить температуру и время синтеза по сравнению с твердофазным методом синтеза из соответствующих оксидов Bi₂O₃ и Fe₂O₃ (для которого $T_1 = 800^{\circ}$ С, 8 ч и $T_2 = 850^{\circ}$ С, 30 мин) и при этом снизить содержание примесных фаз Bi₂Fe₄O₉ и Bi₂₅FeO₃₉ с ≈5 до ≈3 %.

Заключение. Предложен и разработан твердофазный метод синтеза сегнетомагнетика ВіFeO₃ из прекурсора $Bi_{25}FeO_{39}$ и оксида Fe_2O_3 . Проведено исследование влияния различных режимов термообработки на кристаллическую структуру BiFeO₃, в результате которого были выбраны наиболее оптимальные условия синтеза образца BiFeO₃, содержащего следовые количества примесных соединений Bi₂FeO₉ и Bi₂₅FeO₃₉. Таким образом, сделан вывод, что для получения однофазных образцов BiFeO₃ необходим тщательный подбор условий синтеза, т. е. оптимального режима термообработки (температуры и времени обжига), который бы учитывал как термодинамические характеристики, так и кинетические закономерности протекающих реакций.

Литература

1. Пятаков А. П., Звездин А. К. Магнитоэлектрические материалы и мультиферроики // Успехи физических наук. 2012. Т. 182, № 6. С. 593-620.

2. Catalan G., Scott J. F. Physics and Applications of Bismuth Ferrite // Advanced Materials. 2009. Vol. 21. P. 2463–2485.

3. Khikhlovskyi V. V. The renaissance of multiferroics: bismuth ferrite (BiFeO₃) – a candidate multiferroic material in nanoscience. 2010. URL: http://www.rug.nl/zernike/education/topmast ernanoscience/NS190Khikhlovskyi.pdf (date of access: 22.03.2012).

4. Макоед И. И. Получение и физические свойства мультиферроиков: монография. Брест: БрГУ, 2009. 181 с.

5. Особенности образования BiFeO₃ в смеси оксидов висмута и железа (III) / М. И. Морозов [и др.] // Журнал общей химии. 2003. Т. 73, вып. 11. С. 1772–1776.

6. Оптические свойства керамики BiFeO₃ в диапазоне частот 0,3–30 THz / Г. А. Командин [и др.] // Физика твердого тела. 2010. Т. 52, вып. 4. С. 684–692.

7. Reaction pathways in the solid state synthesis of multiferroic $BiFeO_3$ / M. S. Bernardo [et al.] // J. Eur. Ceram. Soc. 2011. Vol. 31. P. 3047–3053.

8. Carvalho T. T., Tavares P. B. Synthesis and thermodynamic stability of multiferroic BiFeO₃ // Mater. Letters. 2008. V. 62. P. 3984–3986.

9. Room-temperature coexistence of large electric polarization and magnetic order in $BiFeO_3$ single crystals / D. Lebeugle [et al.] // Phys. Rev. B. 2007. V. 76. P. 024116-1-024116-8.

10. Powder Diffraction File. Swarthmore: Joint Committee on Powder Diffraction Standard: Card № 00-046-0416.

11. Особенности тепловых, магнитных и диэлектрических свойств мультиферроиков BiFeO₃ и Bi_{0.95}La_{0.05}FeO₃ / А. А. Амиров [и др.] // Физика твердого тела. 2009. Т. 51, вып. 6. С. 684–692.

12. Затюпо А. А. Физико-химические свойства твердых растворов на основе феррита висмута и кобальтитов, галлатов лантана, самария со структурой перовскита: дис... канд. хим. наук: 02.00.21, 02.00.04. Минск, 2013. 190 с.

Поступила 03.03.2013