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of structural properties and a noticeable 

zirconium oxidation while interacting with water. 
means chain 

zirconium reaction. This tempera-
means fast cladding destruction and tak-

ne of the main barriers of 

Thus, there is a problem of safe storage of SNF 
choosing the optimum design and regime parame-
ters of a cooling system in conditions of most 
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 During the planned overload of fuel for heat 
removal from SNF in a reactor SFP there is a cooling 
system which periodically operates, maintaining 
water temperature in the pool at 30 °C. The max-
imal water temperature in SFP should not exceed 
70 °C at the complete unloading of SNF to the fuel 
pool from the nuclear core of the reactor [2].  

Thus, cooling of SNF is: 
1) due to forced convection of ventilated air 

over water surface in the upper section of SFP; 
2) due to the forced circulation of cooling water. 
Analysis method. Numerical 3D model analogues 

can serve as basis of the analysis of SFP and SNF. 
Similar model analogues should be constructed 

considering complex spatial geometrical arrange-
ments and describe various modes of the heat re-
moval, taking into account both convective trans-
fer, and evaporation effect. 

2D and 3D non-stationary conservation equa-
tions should constitute the basis for such techniques 
at the starting and boundary conditions correspond-
ing to actual storage conditions of SNF in SFP. 

In this paper, within the formalized software 
package COMSOL Multiphysics model patterns, 
the analogue system of spent nuclear fuel tempo-
rary storage and cooling in the reactor spent fuel 
pools is worked out (Fig. 2). 

 
Fig. 2. Model analogue and calculated network of SFP 

(geometrical parameters – 6×13×17 m): 
1 – inlet air ventilating duct; 2 – outlet air ventilating 
duct; 3 – cooling water manifold; 4 – water discharge 

manifold; 5 – water level line; 6 – HRP location. 

In the calculated SFP model the following 
main assumptions are accepted: 

1) gas phase movement is described within the 
bi-component gas vapor mixture; 

2) physical properties of water and solid envi-
ronments are accepted by constants, and properties 
of gas vapor mixture – as temperature-, pressure-, 
and air relative humidity - dependent;  

3) bottom and walls of the SF pool o are consi-
dered to be heat isolated, and heat transfer is car-
ried out, respectively, only via ventilating ducts. 

Thus, two mechanisms of heat removal were 
considered: 

1) due to forced convection of ventilated air 
over water surface in the upper section of SFP; 

2) due to the forced injection and a water in-
take through a drainage collector and service water 
intake at the top level of liquid. Radiation heat ex-
change was not considered. 

The common transfer processes description 
model was based on the solution of non-stationary 
movement, weight and thermal energy conserva-
tion equations [4] 

 ( )ρ η ( ) ρ 0,TU U U U U P
t

¶ é ù- Ñ Ñ + Ñ + Ñ + Ñ =ë û¶
 

 0,UÑ =   

 ( )ρ ,p V
TC u T T Q
t
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where ρ – environment density; U – flow rate; η –
dynamic viscosity coefficient; P – hydrostatic 
pressure; T – temperature; Ср – specific heat ca-
pacity; u – speed vector; λ – a thermal conductivi-
ty; QV – a volume thermal source. T superscript is 
turbulent constituent, defined according to the 
turbulence model in COMSOL Multiphysics in-
terpretation.  

To describe transfer processes in SFP sections 
(fig. 3) with various extent of construction filling, 
the following Brinkman's equation was accepted: 

 
( )1ρ η ( ) 0,

(1 )
TU U U U P

t k
¶ hé ù- Ñ Ñ + Ñ + +Ñ =ë û¶ -e  

where (1 )- e – the extent of construction filling 
in SFP sections at the average fraction of a 
throat e; k  – permeability coefficient, in calcu-
lations k = 0,01. 

Introduction of porosity concept allowed con-
sidering transfer processes by a uniform method in 
the composite HRP rack design in a wide extent 
range of construction filling (1 – ε). Racks and sec-
tions for HRP storage can be considered as hetero-
geneous environments with a plenty of inhomoge-
neities in the form of changing throats. It is appar-
ent that analysis of each separate inhomogeneity is 
not possible. To solve this problem, it is necessary 
to simulate an actual heterogeneous section with 
various level of HRP filling (1 – ε), replacing it 
with the efficient homogeneous environment, pos-
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2 
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sessing the same macroscopic properties and beha-
vior under external influence, as actual object. 

In the analyzed method the macroscopic trans-
port properties and behavior of a material of SFP 
section for HRP storage are removed, considering 
its structural spatial filling. The possibility to dis-
tinguish the representative porous volume is ex-
tremely essential for arranging computational ex-
periments at various extents of SFP filling.  

Additionally, the mass of a vapor phase con-
servation equation was solved: 

 ( )
"

" " " ,c u c D c
t

¶
+ ×Ñ = Ñ Ñ

¶

r
 

where "c  – a vapour concentration; "D  – a vapour 
diffusion in air coefficient. 

The total heat flux through the surface phase 
separation was assumed  

 ,sum ev conq q q= +  

where qev − evaporation heat flux; qcon - convection 
heat flux. 

Sum heat flux in an approximation of a method of 
the given film near a SFP surface was defined as [6] 
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where Nu – Nusselt number; L – the typical dis-
tance scale of processes at a surface; λmix – a gas 
vapor mixture thermal conductivity coefficient; Tsf – 
saturation temperature (at a surface); T ∞ – tem-
perature at a surface distance); "D  – a vapour dif-
fusion in air coefficient; mixr – a gas vapor mixture 
density; k – evaporation latent heat; mmix – the mass 
of a gas vapor mixture. 

For numerical implementation of SFP model, 
a method of finite elements in COMSOL Multi-
physics system interpretation was used. Thus, the 
problem of maintaining the non-stationary 
process was solved. 

Results of computational experiments. Nu-
merical model of heat-mass exchange processes at 
SNF storage in the SF pool was defined for three 
cases:  

 minimum porosity (the maximal filling) – 
20% at drainage through the bottom drainage 
collector; 

 minimum porosity – 20% at water intake 
through a branch pipe in the upper section; 

 alternative calculations at various values of 
porosity ( percentage ratio) and at water intake 
through a branch pipe in the upper section for 
monitoring that the maximal temperature of HRP 
do not reach a boiling point. 

The described above computational experi-
ments allowed qualitative and quantitative assess-
ing of heat-mass exchange processes in the HRP 
storage system. Results of model experiments are 
presented in Fig. 3-5. 

 
Fig. 3. Spatial distribution of vectors and flow functions in a liquid layer  

and SFP gas area (geometrical parameters according to fig. 2):  
a – at a water intake only through the top branch pipe;  

b – at a water intake only through the bottom drainage pipe. 
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Conclusion. Within the computing COMSOL 
programs the computer module of heat transfer 
processes in SFP calculation was worked out, tak-
ing into account non-uniform filling and non-
uniform thermal HFR emission. 

For calculation of hydrodynamic characteristics in 
sections with heat-producing assemblies the porosity 
model is offered. The calculated values of speed fields 
and temperatures in spent fuel pools are received. 

Alternative calculations to compare the as-
sessment of various refrigerating conditions and 
the maximal HFR temperature are carried out. It is 
defined that the forced pumping of water through 
racks significantly reduces the maximal HFR tem-
perature even at its maximal filling. At the same 
time, the intake and input of water through the up-
per HFR section leads to the fact, that heat HFR 
removal is only due to natural convection in the 
constrained rack construction. 

As a result of alternative calculations the max-
imal degree of filling ((1 – ε) = 20%) of section 
HFR racks in SFP which does not raise tempera-
ture above a boiling point at the least effective heat 
removal option was defined. 

The developed computational template and the 
results of this research can be used for carrying out 

safety SNF storage examination at pre-reactor 
spent fuel pools, and, in particular, at the Belaru-
sian nuclear power plant. 
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