УДК 539.1.06:539.23.234

О. Г. Бобрович, кандидат физико-математических наук, доцент (БГТУ);

И. С. Ташлыков, доктор физико-математических наук, профессор (БГПУ);

В. В. Тульев, кандидат физико-математических наук, доцент (БГТУ)

ВЛИЯНИЕ ПАРАМЕТРОВ ИОННО-АССИСТИРУЕМОГО ОСАЖДЕНИЯ НА ФОРМИРОВАНИЕ Me/Si-СТРУКТУР

Методом РОР изучен элементный состав металлических (Co, Mo, W) покрытий, осажденных на (100)Si в условиях ионного (Co⁺, Mo⁺, W⁺) ассистирования. Толщина покрытия увеличивается с уменьшением ускоряющего напряжения для ассистирующих ионов Co⁺, Mo⁺, W⁺ от 20 до 7 кВ и зависит как от отношения плотности потока ионов J_i к плотности потока нанесенных атомов J_A (J_i / J_A), так и типа осаждаемого на Si металла. Установлено, что оптимальное отношение J_i / J_A , при котором достигается наибольшая толщина Co- и Мо-покрытий составляет 0,06, а для W-покрытия – 0,04.

By RBS elemental composition of Co, Mo, W coatings deposited on (100)Si substrate in the condition of ion (Co⁺, Mo⁺, W⁺) assisting have been investigated. Thickness of the coatings are increases with the decrease of the accelerating voltage for assisting Co⁺, Mo⁺, W⁺ ions from 20 to 7 kV and depends on the relationship of the flux density of ions J_i to the flux density of deposited atoms J_A (J_i/J_A) and type deposited on Si metal. It is established that the optimal ratio of J_i/J_A at which is reached the maximum thickness Co-coating and Mo-coating is 0.06 and for W-coating – 0.04.

Введение. Воздействие ионных пучков на рост пленки и ее физические свойства зависит во многом от типа иона, его энергии и отношения плотности потока ионов J_i к плотности потока нанесенных атомов J_A (J_i/J_A). При формировании металлических покрытий ионноассистируемым нанесением тонких пленок представляется важным исследование влияния отношения J_i/J_A на скорость роста пленки при различных условиях нанесения покрытий.

Ионно-ассистируемое нанесение металлических (Co, Mo, W) покрытий на пластины (100) Si и на предварительно подготовленные структуры металл – (100)Si (металл: Со, Мо, W) в условиях ассистирования ускоренными ионами Со⁺, Мо⁺, W⁺ осуществлялось при ускоряющем напряжении U = 7, 15 и 20 кВ. Для этого использовали резонансный ионный источник вакуумной электродуговой плазмы, который генерирует как нейтральный поток ЈА, так и ионный поток J_i частиц наносимого металла [1-3]. Отношение J_i / J_A в наших экспериментах менялось от 0,02 до 0,45, что соответствовало условиям роста покрытия на подложке [4]. При этом следует отметить, что ионно-ассистируемое нанесение металлических покрытий осуществлялось на структуры металл – Si, полученные осаждением соответствующего металла в течение 1 ч в режиме работы (пассивного нанесения) ионного источника при нулевом значении ускоряющего напряжения. В рабочей камере в процессе создания металлических покрытий поддерживался вакуум ~10⁻² Па. Измеренные скорости осаждения металлических покрытий были от 0,4 до 1,9 нм/мин, а плотности ионного тока менялись от 2,5 до 20 мкА/см² в зависимости от энергии облучения и типа наносимого металла. Элементный состав исходных и модифицированных образцов проводили с применением метода резерфордовского обратного рассеяния (POP) ионов гелия с энергией $E_0 = 1,5$ МэВ и геометрией рассеяния $\theta_1 = 0^\circ$, $\theta_2 = 70^\circ$, $\theta = 110^\circ$ [5]. Энергетическое разрешение детектора составляло 15 кэВ, а глубинное разрешение в кремнии 13 нм. Для анализа толщины наносимого металлического покрытия, распределения элементов по глубине в формируемых структурах покрытие – подложка, применяли компьютерное моделирование спектров POP по программе RUMP [6].

Основная часть. Экспериментальные спектры РОР ионов гелия от исходного образца Si и образцов Mo/Si, модифицированных нанесением Мо в условиях ассистирования ионами Мо⁺, показаны на рис. 1. Вертикальными стрелками отмечены номера каналов, которые связаны с энергиями рассеяния ионов гелия на атомах соответствующих элементов, локализованных на поверхности образцов Si. В числе элементов, находящихся в поверхностном слое исследуемых материалов, на спектрах идентифицируются молибден, а также С, О, Si. Сдвиг сигнала от кремния в область меньших номеров каналов на спектрах РОР свидетельствует о том, что на поверхности кристалла кремния образуется покрытие. Факт осаждения металлического покрытия подтверждается также появлением сигнала в области 190-210 каналов в результате обратного рассеяния ионов гелия от атомов молибдена (спектры *1–3*, рис. 1).

Рис. 1. Энергетические спектры ОР ионов гелия с *E*₀ = 1,5 МэВ от кристаллов (100)Si, модифицированных ионно-ассистируемым нанесением молибденовых покрытий при ускоряющем напряжении:

1 – 7 кВ; *2* – 15 кВ; *3* – 20 кВ; *4* – исходный образец кремния

Факт осаждения металлического покрытия подтверждается также появлением сигнала в области 190–210 каналов в результате обратного рассеяния ионов гелия от атомов молибдена (спектры l-3, рис. 1). Пики в области 70–120 каналов отражают появление в осажденных на кремний покрытиях атомов углерода и кислорода, по-видимому, из остаточной атмосферы вакуумной камеры экспериментальной установки. Качественно подобные результаты наблюдались при пассивном без ионного ассистирования и ионно-ассистируемом осаждении Со- и W-покрытий на Si-подложку.

На рис. 2 приведены профили распределения элементов по глубине в образцах Co/Si, полученных в разных условиях. На представленных концентрационных профилях указана граница раздела покрытие - подложка, которая устанавливалась согласно разработанной методике введения Хе-маркера [7]. Анализ концентрационных зависимостей распределения элементов в сформированных металлических покрытиях обнаруживает их существенное различие от металла осаждаемого покрытия, а также технологических условий осаждения. При ускоряющем напряжении 7 кВ концентрация атомов Со на поверхности составляет 30 ат. %, а при 20 кВ -25 ат. % и далее она плавно уменьшается до 10 ат. % к границе раздела покрытие – подложка. Распределение Мо и W в покрытии носит аналогичный характер. Максимальная концентрация атомов Мо на поверхности составляет 20 ат. % (U=7 кB) и плавно уменьшается до 10 ат. % к границе раздела покрытие – подложка. При U = 20 кВ концентрация атомов Мо уменьшается от поверхности к границе раздела покрытие – подложка от 9 до 2 ат. %.

Рис. 2. Распределение элементов по глубине в образцах Si с Co покрытием, нанесенным в условиях ионного ассистирования при ускоряющем напряжении: a - 20 kB; 6 - 7 kB

Анализ распределения W в формируемых металлических покрытиях на кремнии обнаруживает уменьшение концентрации атомов W от поверхности покрытия к границе раздела покрытие – подложка от 20 до 2 ат. % (при U=7 кВ) и от 30 до 3 ат. % (при U=15 кВ).

Кислород и углерод распределены в покрытии неравномерно. Так, концентрация кислорода в Со и W покрытиях составляет 10–20 ат. %, а в Si становится ниже, чем концентрация Со и W. Распределение углерода в покрытии качественно подобно распределению в нем кислорода. Однако концентрация атомов С примерно в 2–6 раз в Со-покрытии и в 1,5–4 раза в W-покрытии выше, чем атомов О, и снижается до ~40 ат. % к границе раздела покрытие – подложка. В случае Мо-покрытий кислорода в ~4–6 раз больше, чем углерода, что может быть связано с высокой химической активностью Мо по отношению к кислороду. Кроме того, по всей толщине осажденного покрытия содержится кремний с концентрацией от 10–20 ат. % у поверхности покрытия с увеличением до 40–50 ат. % к границе раздела покрытие – подложка. Наличие в покрытии кремния связано со встречной диффузией из подложки. Подобная встречная диффузия серы на поверхность из объема модифицируемой аналогичным методом резины наблюдалась ранее [8] при осаждении металлических покрытий на эластомер.

На рис. З представлена зависимость толщины осаждаемого покрытия от отношения J_i / J_A .

Рис. 3. Зависимость толщины осаждаемого покрытия Со от отношения J_i / J_A на подложку: l - Si; 2 - Co/Si

Уменьшение отношения J_i / J_A с 0,45 до 0,06 позволяет увеличить толщину наносимого на подложку Со-покрытия с 30–40 до 80–90 нм. Как видно, нанесение металлического покрытия на структуры Co/Si в режиме работы ионного источника при нулевом значении ускоряющего напряжения позволяет получить более толстые покрытия. Уменьшение ускоряющего напряжения для ассистирующих ионного Co⁺, Мо⁺, W⁺ до 7 кВ позволяет также увеличить толщину осаждаемого покрытия за счет, уменьшения интенсивности процессов распыления осаждаемого покрытия.

Заключение. Методом резерфордовского обратного рассеяния установлено, что в состав получаемых на кремнии металлических покрытий входят атомы наносимого металла (Со, Мо, W), технологических примесей углерода и кислорода из вакуумной камеры, а также Si в результате встречной диффузии из подложки в покрытие. Ионно-ассистируемое нанесение со скоростью 0,4–1,9 нм/мин металлических покрытий при ускоряющем напряжении от 7 до 20 кВ позволяет получить покрытия различной

толщины, которая зависит как от отношения J_i / J_A , так и типа осаждаемого на Si металла. Установлено, что оптимальное отношение J_i / J_A , при котором достигается наибольшая толщина Со- и Мо-покрытий, составляет 0,06, а для W-покрытия – 0,04.

Литература

1. Композиционный состав и повреждение поверхности кремния ионно-ассистированным нанесением тонких пленок / И. С. Ташлыков и др. // Поверхность. Рентгеновские, синхротронные и нейтронные исследования. 2009. № 5. С. 92–95.

2. Тульев В. В., Ташлыков И. С. Изучение композиционного состава покрытий на основе Сг, Ті и Zr, сформированных на алюминии и кремнии методом ионно-ассистированного нанесения в условиях саморадиации // Радиационно-термические эффекты и процессы в неорганических материалах: труды IV Междунар. науч. конф., Томск, 12–19 авг. 2004 г. / Томский политехн. ун-т. Томск, 2004. С. 92–95.

3. Carter G., Colligon J., Tashlykov I. S. A simple theory and experimental investigation of ion assisted deposition of cobalt on silicon // J. of Advanced Materials. 1999. Vol. 5, No. 1. P. 1–6.

4. Hirvonen J. K. Ion beam assisted thin film deposition: Fundamentals and Applications of IBAD Processing // Materials and Processes for Surface and Interface Engineering / Y. Pauleau (ed.). Netherlands: Kluwer Academic Publishers, 1995. P. 307–346.

5. Комаров Ф. Ф., Кумахов М. А., Ташлыков И. С. Неразрушающий анализ поверхностей твердых тел ионными пучками. – Минск: Университетское, 1987. 256 с.

6. Doolittle L. R. A semiautomatic algorithm for Rutherford backscattering analysis // Nucl. Instr. Meth. Phys. Res. 1986. Vol. B15. P. 227–234.

7. Бобрович О. Г., Ташлыков И. С., Глухатаренко Т. И. Изучение границы раздела фаз в структуре Ті – Si с применением Хе маркера // Труды БГТУ. Сер. VI, Физ.-мат. науки и информатика. 2005. Вып. XIII. С. 90–92.

8. Тульев В. В., Верес О. Г., Ташлыков И. С. Исследование структуры и химических связей в покрытиях на основе W, полученных на эластомере методом ионно-ассистированного осаждения // Взаимодействие излучений с твердым телом: материалы 7-й Междунар. конф., Минск, 26–28 сент. 2007 г. / Белорус. гос. ун-т. Минск, 2007. С. 338–340.

Поступила 27.02.2014