УДК 54-165:544.022+536.413+537.31/32

Е.А Чижова, доц., канд. хим. наук; А.И. Клындюк, доц., канд. хим. наук;

Н.В. Брушко, студ., А.С. Мазько, студ. (БГТУ, г. Минск)

СТРУКТУРА И СВОЙСТВА ТВЕРДЫХ РАСТВОРОВ МУЛЬТИФЕРРОИКОВ $Bi_{1-x}Nd_xFe_{1-x}Mn_xO_3$

Твердофазным методом синтезирована керамика $Bi_{1-x}Nd_xFe_{1-x}Mn_xO_3$ (0,0 < $x \le 0,21$), изучены ее кристаллическая структура, тепловое расширение и электрофизические свойства. Установлено, что твердый раствор с x = 0.03 имел ромбоэдрически искаженную структуру перовскита, а в образцах с $0.06 \le x \le 0.21$, согласно данным РФА, наблюдалось сосуществование ромбоэдрической и орторомбической фаз перовскитов $Bi_{1-x}Nd_xFe_{1-x}Mn_xO_3$, причем с ростом х содержание орторомбической фазы увеличивалось. Согласно данным ИК-спектроскопии поглощения, в образцах с $0.0 < x \le 0.09$ преобладала ромбоэдрически, а с $0.15 \le x \le 0.21$ - орторомбически искаженная фаза перовскита. Размеры элементарной ячейки твердых растворов уменьшались при частичном замещении висмута неодимом, а железа марганцем: так, параметр перовскитной ячейки (a_n) твердых растворов $Bi_{0.97}Nd_{0.03}Fe_{0.97}Mn_{0.03}O_3$ и $Bi_{0.79}Nd_{0.21}Fe_{0.79}Mn_{0.21}O_3$ составил 0,3963 и 0,3922 нм соответственно. Коэффициент линейного теплового расширения составил $\approx 13 \cdot 10^{-6} \; \text{K}^{-1}$ для образцов с преобладанием ромбоэдрической фазы и $(10-11)\cdot 10^{-6} \,\mathrm{K}^{-1}$ для образцов, в которых орторомбическая Твердые преобладала фаза. $Bi_{1-x}Nd_xFe_{1-x}Mn_xO_3$ являлись полупроводниками *p*-типа, электропроводность (σ) которых возрастала, а коэффициент термо-ЭДС (S) слабо изменялся с ростом х и для всех исследованных твердых растворов был значительно ниже, чем для незамещенного феррита висмута Ві-FeO₃. Значения энергии активации электропроводности, определенные из линейных участков зависимостей $ln(\sigma T) = f(1/T)$ снижались при увеличении степени замещения висмута неодимом, а железа маргани составляли 0,95 И 0,51 эВ для твердых растворов $Bi_{0.97}Nd_{0.03}Fe_{0.97}Mn_{0.03}O_3$ и $Bi_{0.79}Nd_{0.21}Fe_{0.79}Mn_{0.21}O_3$ соответственно. энергии активации термо-ЭДС твердых $Bi_{1-x}Nd_xFe_{1-x}Mn_xO_3$, найденные из линейных участков зависимостей S = f(1/T), слабо зависели от состава керамики и варьировались в пределах 0,07-0,08 эВ.

Работа выполнена при поддержке Белорусского республиканского фонда фундаментальных исследований (грант X13-005).