УДК 535.37+541.65+543.4

И. В. Вершиловская, Н. Н. Крук

Белорусский государственный технологический университет

КИСЛОТНО-ОСНОВНЫЕ И ФОТОФИЗИЧЕСКИЕ СВОЙСТВА АСИММЕТРИЧНЫХ ДЕНДРИМЕРОВ С ПОРФИРИНОВЫМ ЯДРОМ

Изучены спектральные и фотофизические свойства смешанных 5,10,15,20-арилпорфиринов с А₂В₂-цис и А₂В₂-транс типами периферического замещения, а также дендримеров с порфириновым ядром, обладающих такой же архитектурой спейсеров между тетрапиррольным макроциклом и индолокарбазольными дендронами, и исследовано формирование их моно- и дважды протонированных форм. Установлено, что в ходе кислотно-основного титрования всех исследованных соединений последовательно образуются моно- и дважды протонированные формы, однако из-за близости констант протонирования $pK_{a1}(H_2\Pi \leftrightarrow H_3\Pi^+)$ и $pK_{a2}(H_3\Pi^+ \leftrightarrow H_4\Pi^{2+})$ концентрация монопротонированной формы оказывается малой по сравнению с концентрациями свободного основания и дважды протонированной формы как в основном синглетном S₀ состоянии, так и в первом возбужденном синглетном S₁ состоянии. Различная локализация периферических заместителей/спейсеров А (фенильные группы) и В (мезитильные группы) типов, которые различаются характером стерических взаимодействий с тетрапиррольным макроциклом, не приводит к заметным изменениям кислотно-основных свойств. Свободные основания всех соединений имеют близкие фотофизические характеристики. Обнаружено, что дважды протонированные формы дендримеров с порфириновым ядром и исходных порфиринов имеют различные вероятности каналов дезактивации первого возбужденного синглетного S₁ состояния. По сравнению с молекулами свободных оснований величина квантового выхода флуоресценции порфиринового ядра дендримеров уменьшается в 50-1000 раз, в то время как у исходных порфиринов наблюдается ее трехкратное увеличение.

Ключевые слова: порфирин, дендример, кислотно-основные равновесия, флуоресценция.

I. V. Vershilovskaya, M. M. Kruk Belarusian State Technological University

ACID-BASE AND PHOTOPHYSICAL PROPERTIES OF ASYMMETRIC DENDRIMERS WITH PORPHYRIN CORE

The spectral and photophysical properties of mixed 5,10,15,20-arylporphyrins with A_2B_2 -*cis* and A_2B_2 -*trans* peripheral substitution and the porphyrin core dendrimers with the same spacer architecture between tetrapyrrolic macrocycle and indolocarbazole dendrons as well as those of their mono- and doubly protonated forms have been studied. Sequential formation of both mono- and doubly protonated forms is small compared to those of the free base and doubly protonated one due to close values of protonation constants $pK_{a1}(H_2P \leftrightarrow H_3P^+)$ and $pK_{a2}(H_3P^+ \leftrightarrow H_4P^{2+})$ in both ground singlet S_0 state and first excited singlet S_1 state. Different position of peripheral substituents/spacers of A (phenyls) and B (mesityls) type, which is known to have different sterical hindrances with tetrapyrrolic macrocycle, does not result in any noticeable differences in the acid-base properties. The free bases of all the compounds have similar photophysical properties. Doubly protonated forms of dendrimers and parent porphyrins was found to have different probabilities of lowest singlet S_1 state deactivation. Compared to the free base molecules the fluorescence quantum yield value for dendrimers reduces for 50–1,000 times, whereas the parent porphyrins demonstrate about three fold increase.

Key words: porphyrin, dendrimer, acid-base equilibria, fluorescence.

Введение. Физико-химические свойства и оптические характеристики тетрапиррольных соединений и супрамолекулярных систем, включающих тетрапиррольные хромофоры, в которых тетрапиррольные макроциклы связываются с соседними молекулярными фрагментами посредством арильных спейсеров, существенно зависят от степени свободы ароматических арильных заместителей [1–3]. Очевидно, что, варьируя количество заместителей (спейсеров) и/или место их присоединения к тетрапиррольному макроциклу, можно добиться плавного изменения фотофизических и люминесцентных характеристик молекул в требуемом направлении. Особенно это важно в случае формирования протонированных форм тетрапиррольных молекул, поскольку их формирование сопряжено с существенным искажением

планарности макроцикла и формированием так называемых неплоских конформеров седлообразного типа [4]. Для арильных заместителей, характеризующихся высокой степенью стерических взаимодействий с макроциклом из-за наличия объемных групп в одном или обоих пара-положениях арильных фрагментов, степень седлообразного искажения макроцикла оказывается существенно ниже [5]. При этом становится возможным стабилизировать монопротонированную форму порфирина, в отличие от молекулы 5,10,15,20-мезо-тетрафенилпорфирина, для которого формирование монопротонированной формы в обычных условиях не наблюдается. Очевидно, что в случае замещений, обеспечивающих смешанное стерически затрудненное и стерически свободное вращение арильных заместителей, следует ожидать более сложную спектральную картину. Вместе с тем, последовательное изменение величины стерических взаимодействий в таких системах может обеспечить условия для плавного изменения их кислотно-основных, фотофизических и спектрально-люминесцентных характеристик. Введение стерически затрудненных арильных заместителей окажет влияние на синергизм взаимного влияния наклона пиррольных колец и поворота арильных колец на величину и характер седлообразных искажений тетрапиррольного макроцикла [5]. В то же время вес и геометрические параметры (размеры, способ ветвления, номер поколения для дендримерной оболочки, природа концевых групп супрамолекулярной системы) молекулярных фрагментов, присоединенных через арильные спейсеры, также могут оказать влияние на кислотно-основные равновесия в ядре тетрапиррольного макроцикла. Для установления закономерностей влияния дендримерной оболочки на оптические характеристики и кислотно-основные свойства дендримеров с порфириновым ядром был выбран набор соединений, который включал: смешанные 5,10,15,20-арилпорфирины со строением А2В2*цис*, A₂B₂-*транс*, где А – фенил, В – мезитил (2,4,6-метил-фенил) (рис. 1 а, б); порфирининдолокарбазольные дендримеры с архитектурой спейсеров A_2B_2 -*цис*, A_2B_2 -*транс* (рис. 1 *в*, *г*).

Цель настоящей работы заключается в установлении роли индолокарбазольных дендронов в формировании кислотно-основных, фотофизических и люминесцентных свойств исследуемых систем.

Основная часть. Электронные спектры поглощения свободных оснований 5,10,15,20-арилпорфиринов и порфирин-индолокарбазольных дендримеров с архитектурой спейсеров A₂B₂-*цис* и A₂B₂-*транс* практически не отличаются друг от друга. Варьирование архитектуры размещения спейсеров A₂B₂-*цис*/A₂B₂-*транс* для каждой пары соединений не приводит к спектральным изменениям. В то же время при переходе от исходных порфиринов к дендримерам наблюдаются небольшие сдвиги полос поглощения (менее 2 нм), которые обусловлены перераспределением электронной плотности между макроциклом и периферическими заместителями из-за слабого увеличения электронодонорной способности последних.

Рис. 1. Молекулярная структура смешанных 5,10,15,20-арилпорфиринов (вверху) и порфирин-индолокарбазольных дендримеров (внизу) с архитектурой A₂B₂-*цис* (*a*, *b*) и A₂B₂-*транс* (*б*, *c*)

При протонировании ядра тетрапиррольного макроцикла как в исходных порфиринах, так и в дендримерах, происходит последовательное формирование моно- и дважды протонированных форм, которое обнаруживается по отсутствию изобестических точек в спектрах поглощения в ходе кислотно-основного титрования. При этом из-за близости констант протонирования $pK_{a1}(H_2\Pi \leftrightarrow H_3\Pi^+)$ и $pK_{a2}(H_3\Pi^+ \leftrightarrow H_4\Pi^{2+})$ концентрация монопротонированной формы оказывается малой по сравнению с концентрациями свободного основания и дважды протонированной формы. Поэтому спектральные изменения, наблюдаемые в ходе кислотно-основного титрования всех исследованных соединений в основном синглетном S₀ состоянии, главным

образом отражают равновесие между свободным основанием и дважды протонированной формой порфирина (рис. 2).

Рис. 2. Изменение спектров поглощения 5,10,15,20-арилпорфирина A₂B₂-*транс* типа в ходе титрования в системе H₂SO₄ – CH₂Cl₂. Стрелки на этом и следующем рисунке показывают ход спектральных изменений при переходе от свободного основания к дважды протонированной форме

Общая картина спектральных изменений оказалась одинаковой для всех исследованных соединений. Вместе с тем, для спектров поглощения дважды протонированных форм соединений с различной архитектурой периферического замещения следует отметить небольшие отличия. Так, максимум поглощения полосы Соре у свободных оснований соединений А₂В₂-цис и А₂В₂-транс типа лежит при 417 нм и обнаруживает батохромный сдвиг на 20-21 нм при образовании дважды протонированной формы. В то же время длина волны максимума длинноволновой полосы поглощения испытывает гипсохромный сдвиг от 646 к 641 нм у A₂B₂-*цис* порфирина, а у A₂B₂транс порфирина – к 643 нм. Это может быть объяснено различиями в степени неплоскостных искажений у цис- и транс-конформеров дважды протонированной формы, которая, как было показано ранее [5], однозначно соотносится с энергией длинноволнового электронного перехода.

Спектры флуоресценции практически одинаковы для свободных оснований всех исследованных соединений, а величина квантового выхода флуоресценции $\Phi_{\phi\pi}$ дендримеров возрастает на 40% (рис. 3, таблица). При переходе к протонированным продуктам в ходе титрования обнаружены существенные различия спектрально-люминесцентных свойств исходных порфиринов с одной стороны, и порфирининдолокарбазольных дендримеров с другой.

Рис. 3. Изменение спектров флуоресценции 5,10,15,20-арилпорфирина A₂B₂-*транс* типа (*a*) и порфирин-индолокарбазольного дендримера с A₂B₂-*транс* архитектурой (б) в ходе титрования

Так, формирование протонированных форм 5,10,15,20-арилпорфиринов сопровождается значительным ростом квантового выхода флуоресценции. У A_2B_2 -*транс* порфирина величина $\Phi_{\phi\pi}$ увеличивается более чем в 3 раза, достигая значения 0,21, а для A_2B_2 -*цис* порфирина $\Phi_{\phi\pi} = 0,176$.

Такое увеличение было ранее отмечено нами для симметрично замещенного 5,10,15,20тетрамезитилпорфирина [5], у которого все заместители являются стерически напряженными: из-за наличия метильных групп в ортоположениях бензольного кольца формируется жесткий конформер, в котором мезитильные группы расположены практически ортогонально средней плоскости макроцикла. Следовательно, рост квантового выхода флуоресценции можно связать с ограничением конформационой подвижности молекулы. При этом можно предположить, что конформационная подвижность и, следовательно, степень непланарных искажений молекулы А2В2-цис порфирина несколько выше.

Архитектура	Форма	$\lambda_{\phi\pi}^{\text{Makc}}$, HM		φ 10 ²
		$Q_{x}(0,0)$	$Q_x(1,0)$	$\Phi_{\phi\pi}\cdot 10^{-1}$
5,10,15,20-Арилпорфирины				
A ₂ B ₂ - <i>ųuc</i>	$H_2\Pi$	649,0	717,0	6,6
	$H_3\Pi^+$	-	-	-
	$H_4\Pi^{2+}$	667,0	-	17,6
А ₂ В ₂ -транс	$H_2\Pi$	649,0	717,0	6,6
	$H_3\Pi^+$	-	-	-
	$H_4\Pi^{2+}$	667,0	-	21,0
Порфирин-индолокарбазольные дендримеры				
A_2B_2 - <i>ųuc</i>	$H_2\Pi$	650,5	718,5	9,3
	$H_3\Pi^+$	-	-	—
	$H_4\Pi^{2+}$	671,0	—	0,17
А2В2-транс	H ₂ Π	650,5	718,5	9,3
	$H_3\Pi^+$	647,0	_	1,76
	$H_4\Pi^{2+}$	669,0	_	0,009

Спектрально-люминесцентные характеристики свободных оснований, моно- и дважды протонированных форм 5,10,15,20-арилпорфирина и порфирин-индолокарбазольных дендримеров с архитектурой A₂B₂-*цис* и A₂B₂-*транс* типов

Напротив, у порфирин-индолокарбазольных дендримеров наблюдается сильное тушение флуоресценции: в 50 раз для A_2B_2 -*щс* дендримера и почти в 1000 раз для A_2B_2 -*транс* дендримера (таблица). Очевидно, что это обусловлено специфическими внутримолекулярными взаимодействиями при формировании дендримерной оболочки. Расчетным путем получено значение квантового выхода флуоресценции $\Phi_{\phi\pi}$ для монопротонированной формы A_2B_2 -*транс* дендримера, которое оказалось почти в 10 раз меньше величины, измеренной для свободного основания. Изменение квантового выхода флуоресценции растворов всех соединений в ходе кислотноосновного титрования показано на рис. 4.

Рис. 4. Изменение квантового выхода флуоресценции растворов исследованных соединений в ходе титрования

Концентрация кислоты в растворе дана в относительных единицах, нормировка проведена на концентрацию кислоты, необходимой для полного перевода свободного основания А₂В₂-цис порфирина в дважды протонированную форму. Анализ приведенных зависимостей показывает, что в пределах ошибки измерения все соединения формируют дважды протонированные формы при одной и той же концентрации кислоты, т. е. у них одинаковые величины pK_a для равновесия $H_3\Pi^+ \leftrightarrow H_4\Pi^{2+}$. Таким образом, можно заключить, что формирование дендримера не оказывает существенного влияния на кислотно-основные свойства порфиринового ядра. Монотонный характер зависимостей, приведенных на рис. 4, свидетельствует о том, что величина квантового выхода флуоресценции при последовательном формировании протонированных продуктов в ряду $H_2\Pi \rightarrow H_3\Pi^+ \rightarrow H_4\Pi^{2+}$ изменяется монотонно: у исходных порфиринов она увеличивается, а у порфирин-индолокарбазольных дендримеров – падает.

Заключение. Таким образом, формирование дендримеров практически не меняет кислотноосновные свойства порфиринового макроцикла, но приводит к существенным изменениям его флуоресцентных свойств.

Можно предложить синтез порфириновых дендримеров для диверсификации люминесцентного отклика таких супрамолекулярных систем и использование последних в качестве базовых соединений для разработки чувствительных молекулярных сенсоров на кислоты и основания.

Литература

1. Meso-indolo[3,2-b]carbazolyl-substituted porphyrinoids: synthesis, characterization and effect of the number of indolocarbazole moieties on the photophysical properties / Maes W. [et al.] // Eur. Journal of Organic Chemistry. 2010. No. 13. P. 2576–2586.

2. Click reaction synthesis and photophysical studies of dendritic metalloporphyrins / Nguyen N. T. [et al.] // Eur. Journal of Organic Chemistry. 2014. No. 8. P. 1766–1777.

3. Porphyrin core dendrimers with ether-linked carbazole dendrons: dual luminescence of core and conformational flexibility of dendritic shell / Nguyen N. T. [et al.] // Macroheterocycles. 2014. Vol. 7, no. 3. P. 240–248.

4. Senge M. O. The conformation flexibility of tetrapyrroles – current model studies and photobiological relevance // J. Photochem. Photobiol. B: Biol. 1992. Vol. 16, no. 1. P. 3–36.

5. Kruk M. M., Starukhin A. S., Maes W. Influence of macrocycle protonation on the photophysical properties of porphyrins // Macroheterocycles. 2011. Vol. 4, no. 2. P. 69–79.

References

1. Maes W., Ngo T. H., Rong G., Starukhin A. S., Kruk M. M., Dehaen W. Meso-indolo-[3,2-b]carbazolyl-substituted porphyrinoids: synthesis, characterization and effect of the number of indolocarbazole moieties on the photophysical properties. *Eur. Journal of Organic Chemistry*, 2010, no. 13, pp. 2576–2586.

2. Nguyen N. T., Hofkens J., Scheblykin I. G., Kruk M., Dehaen W. Click reaction synthesis and photophysical studies of dendritic metalloporphyrins. *Eur. Journal of Organic Chemistry*, 2014, no. 8, pp. 1766–1777.

3. Nguyen N. T., Coutino-Gonzalez E., Hofkens J., Scheblykin I. G., Dehaen W. and Kruk M. Porphyrin core dendrimers with ether-linked carbazole dendrons: dual luminescence of core and conformational flexibility of dendritic shell. *Macroheterocycles*, 2014, vol. 7, no. 3, pp. 240–248.

4. Senge M. O. The conformation flexibility of tetrapyrroles – current model studies and photobiological relevance. J. Photochem. Photobiol. B: Biol., 1992, vol. 16, no. 1, pp. 3–36.

5. Kruk M. M., Starukhin A. S., Maes W. Influence of macrocycle protonation on the photophysical properties of porphyrins. *Macroheterocycles*, 2011, vol. 4, no. 2, pp. 69–79.

Информация об авторах

Вершиловская Ирина Вацлавовна – кандидат биологических наук, ассистент кафедры физики. Белорусский государственный технологический университет (220006, г. Минск, ул. Свердлова, 13а, Республика Беларусь). E-mail: vi va@tut.by

Крук Николай Николаевич – доктор физико-математических наук, заведующий кафедрой физики. Белорусский государственный технологический университет (220006, г. Минск, ул. Свердлова, 13а, Республика Беларусь). Е-mail: m.kruk@belstu.by

Information about the authors

Vershilovskaya Irina Vatslavovna – Ph. D. Biology, assistant, Department of Physics. Belarusian State Technological University (13a, Sverdlova str., 220006, Minsk, Republic of Belarus). E-mail: vi_va@tut.by

Kruk Mikalai Mikalaevich – D. Sc. Physics and Mathematics, Head of the Department of Physics. Belarusian State Technological University (13a, Sverdlova str., 220006, Minsk, Republic of Belarus). E-mail: m.kruk@belstu.by

Поступила 19.02.2015