- 4 Ожередова М.А. Исследование кинетики осаждения катионов никеля (II) из отработанных растворов / Интегрированные технологии в промышленности, №3, 2008, С. 88-94.
- 5 Способ утилизации кислого отработанного раствора гальванического производства: пат. 2069240 Российская Федерация, МПК С 25 D 21/18 / Н.К. Рослякова, Р.С. Росляков; заявители Н.К. Рослякова, Р.С. Росляков − № 5039015/26; заявл. 20.04.1992; опубл. 20.11.1996 // 2006.

УДК 666.291.5

И.В. Пищ, проф., д-р техн. наук; Н.А. Гвоздева, доц., канд. техн. наук ngvozdeva@belstu.by (БГТУ, г.Минск)

РЕСУРСОСБЕРЕГАЮЩИЙ СИНТЕЗ ПИГМЕНТОВ СО СТРУКТУРОЙ ВОЛЛАСТОНИТА ДЛЯ ОКРАШИВАНИЯ КЕРАМИЧЕСКИХ МАТЕРИАЛОВ

В настоящее время возрастает потребность в пигментах для окрашивания керамических масс, глазурей, флюсов. Для расширения палитры керамических пигментов, использования в качестве исходных компонентов недефицитных природных сырьевых материалов, снижения температуры синтеза нашли широкое применение природные сырьевые материалы, которые используются в качестве кристаллических решеток-акцепторов. К ним относятся: корунд, циркон, перовскит, волластонит и др. При включении в решетку ряда минералов ионов переходных металлов (Cr^{3+} , Fe^{3+} , Ni^{2+} , Co^{2+} , Mn^{2+} и др.) они приобретают характерную окраску, которая обусловлена поглощением света за счет d-d-переходов электронов, либо за счет переноса заряда. Вхождение в кристаллическую решетку перечисленных ионов обеспечивается твердофазными реакциями при температурах (1200-1300°C) [1].

Природные материалы имеют ограниченную «ионную емкость» кристаллической структуры. Поэтому одним из перспективных направлений получения пигментов является гель-метод, позволяющий увеличить «ионную емкость» кристаллической структуры природных минералов. Используя гель-метод, можно добиться химической однородности многокомпонентных систем (на молекулярном уровне), высокой поверхностной энергии гелей и порошков, обеспечивающей снижение температуры синтеза и получения продуктов высокой чистоты [2].

Целью работы является изучение возможности синтеза окрашенного волластонита, введение которого в составы керамических масс позволит улучшить физико-химические свойства изделий и придать им определенный цвет, а также разработка способов направленного регулирования процессов структуро- и фазообразования синтеза пигментов со структурой волластонита, обладающих высоким коэффициентом отражения света, повышенной термической и химической стойкостью.

Исследование возможности получения окрашенного волластонита по гель-технологии проводили с использованием растворов солей $CaCl_2$ (массовая доля растворенного вещества 15 %), ($Co(NO_3)_2 \cdot 6H_2O$, $Ni(NO_3)_2 \cdot 6H_2O$, $Fe(NO_3)_3 \cdot 9H_2O$, $Cr(NO_3)_3 \cdot 9H_2O$) с массовой долей растворенного вещества 35%, жидкого натриевого стекла с последующей сушкой осадков и их термообработкой при температурах 600 и 900°C.

В основе процесса получения волластонита лежит реакция:

$$Na_2SiO_3+CaCl_2 \rightarrow 2NaCl+CaSiO_3 \downarrow$$

Для изучения хромофорных свойств синтезированных пигментов были получены кривые спектрального отражения на спектрофотометре $C\Phi$ –18 с автоматической записью спектров отражения в области длин волн 400–750 нм.

В зависимости от вида используемого иона-хромофора были синтезированы пигменты широкой цветовой гаммы: светло-зеленого, зеленого, коричневого, синего, голубого цвета. Синтезированные керамические пигменты характеризуются однотонной, яркой и насыщенной окраской. Цветовые характеристики пигментов в зависимости от вводимого иона-хромофора и температуры синтеза приведены в таблице 1.

Таблица 1 – Цветовые характеристики пигментов в зависимости от состава и температуры термообработки

or cocraba ir remireparty par replicooparoritin					
Окрашивающий	Температура обработки, °С	Координаты цветности		Длина	Чистота тона,
НОН		X	y	волны, нм	/0
Ni ²⁺	600	0,320	0,433	550	50
Cr ³⁺		0,211	0,551	515	67
Fe ³⁺		0,413	0,386	590	52
Co ²⁺		0,134	0,258	485	68
Fe ³⁺	900	0,523	0,349	610	69
Co ²⁺		0,129	0,197	480	70
Ni ²⁺		0,311	0,479	550	60
Cr ³⁺		0,243	0,573	530	75

При визуальной оценке пигментов выбраны оптимальные составы, содержащие максимальное количество ионов-хромофров.

Методом рентгенофазового анализа установлены особенности фазообразования в полученных осадках. Анализ результатов рентгенофазового анализа показывает, что в осажденном пигменте присут-

ствует большое количество ренгеноаморфной фазы, а также небольшое количество псевдоволластонита ($CaSiO_3$) и ранкинита ($Ca_3Si_2O_7$). Окраска пигментов обеспечивается за счет адсорбции ионовхромофоров на поверхности образующихся кристаллических фаз и формирования небольших количеств ортосиликатов переходных металлов.

Повышение температуры термообработки до 600 °C не приводит к значительному снижению количества рентгеноаморфной фазы, однако происходит разложение ранкинита и образование ортосиликат кальция (Ca_2SiO_4) и метахромита кальция $Ca(CrO_2)_2$

При дальнейшем повышении температуры обжига до 900 °C количество ренгеноаморфной фазы уменьшается, однако в значительном количестве присутствует фаза кристобалита, что свидетельствует о кристаллизации его из аморфной фазы при данной температуре. Также образуются волластонит ($CaSiO_3$) и метахромит кальция $Ca(CrO_2)_{2,3}$ а также незначительное количество ортосиликатов кобальта (Co_2SiO_4) и никеля (Ni_2SiO_4), что, видимо, связано со сложными процессами фазообразования, протекающих в этом температурном интервале.

В результате проведенного исследования изучены особенности синтеза керамических пигментов с использованием гель-метода. Установлена взаимосвязь температурно-временных параметров синтеза, содержания вводимых ионов-хромофоров с видом и количеством формирующихся кристаллических фаз и цветовыми характеристиками исследуемых пигментов. Выявлено, что окраска пигментов осуществляется как за счет адсорбции ионов-хромофоров на поверхности образующихся кристаллических фаз, так и за счет образования ортосиликатов переходных металлов.

Установлены оптимальные составы пигментов с чистотой тона 50-69%, жаростойкостью>1000°C; кислотостойкостью к раствору 1 н. HCl 99,1-99,2%.

Пигменты, полученные по гель-технологии, прошли успешную апробацию на ОАО «Керамин» и ОАО «Брестский комбинат строительных материалов». Пигменты разработанных составов могут быть рекомендованы для окрашивания глазурей, керамических масс, ангобов.

ЛИТЕРАТУРА

- 1 Пищ, И.В. Керамические пигменты: учеб. / И.В Пищ, Г. Н. Масленникова. Минск: Вышэйшая школа, 2005. 235 с.
- 2 Погребенков, В. М. Керамические пигменты на основе кальций-магниевых силикатов / В. М.Погребенков, М. Б.Седельникова, В. И.Верещагин // Стекло и керамика.—1996.— № 1–2. С. 30–32.