значительно увеличивается теплоустойчивость МС с 39,0 до 45,0°C. Однако при этом наблюдается снижение предела прочности при статическом изгибе МС с 9,0 до 6,0 МПа.

Как видно из данных табл. 3, наиболее оптимальными МС являются составы, рецептуры которых приведены в примерах №№ 3 - 5. По своим физико-механическим характеристикам эти МС (пределу прочности 8,0–8,8 МПа и теплоустойчивости 41,0–43,0°С) значительно превосходят прототип [4].

Полученные результаты исследования легли в основу разработки рецептуры и технологии получения модельного состава марки 3ГВ-103 «М».

С 2012 г. состав 3ГВ-103 «М» внедрен в производство на ОАО «Завод горного воска» [3].

ЛИТЕРАТУРА

- 1 Вершук, В. И. Методы анализа сырья и продуктов канифольного производства. / В. И. Вершук, Н. А. Гурич/ Л.: Гослесбумиздат. 1960.-190 с.
- 2 Прокопчук, Н. Р. Определение энергии активации деструкции полимеров по данным термогравиметрии / Н. Р. Прокопчук // Пластические массы. -1983. -№ 10. C. 24-25.
- 3 Состав модельный ЗГВ-103М: ТУ ВУ 600125053.058-2011. Введ. 15.07.2011. Свислочь: ОАО «Завод горного воска», 2011. Номер регистрации 032559 от 14.07.2011 (БелГИСС).
- 4 Состав модельный ЗГВ-103: ТУ ВУ 00203358.003-98. Введ. 25.07.1998. Свислочь: ОАО «Завод горного воска», 1998. Номер регистрации 007309 от 24.07.1998 (БелГИСС).

УДК 66.065.2

К. Б. Воронцов, доц., канд. техн. наук; Е. Л. Седова Н. И. Богданович, проф., д-р техн. наук lesochim@narfu.ru (САФУ, Архангельск, РФ)

КОАГУЛЯЦИОННАЯ ОЧИСТКА СТОКА ОТБЕЛКИ ЦЕЛЛЮЛОЗЫ

Актуальной задачей современности является защита окружающей среды от выбросов промышленных предприятий. В частности, в целлюлозно-бумажной промышленности серьезной проблемой следует считать загрязнение природных водоемов стоками, содержащими значительные количества высокомолекулярных и биорезистентных соединений. К таким соединениям относятся лигнинные вещества, ко-

торые практически не разрушаются в процессе биологической очистки, традиционно применяемой на большинстве предприятий отрасли.

Обработка коагулянтами — наиболее перспективный, эффективный и распространенный метод очистки воды от грубодисперсных и коллоидных загрязнений. Коагуляция относительно широко применяется для очистки производственных сточных вод от высокомолекулярных соединений. При этом значительный интерес представляет разработка систем и режимов очистки сточных вод ЦБП от лигнинных веществ.

Объектом исследований в данной работе служила вода от отбелки целлюлозы, отобранная на ОАО «Архангельский ЦБК» и имевшая следующие характеристики: $X\Pi K - 900$ мг O_2/π , цветность – 750 °ПКШ, содержание взвешенных веществ — 160 мг/л. В качестве реагентов использовали коагулянт — оксихлорид алюминия и низкокатионный полиакриламидный флокулянт.

Исследования проводили методом планированного эксперимента. Использовали ротатабельный центральный композиционный план второго порядка для трех факторов. В качестве факторов были выбраны следующие: рН, дозировка коагулянта — Д (в расчете на Al_2O_3) и продолжительность обработки коагулянтом, τ . Уровни и интервалы варьирования факторов представлены в таблице. Выходными параметрами были выбраны: эффективность очистки по химическому потреблению кислорода ($\Theta_{X\Pi K}$), эффективность очистки по цветности (Θ_{IJB}) и остаточное содержание взвешенных веществ в осветленной воде (BB).

Пробы сточной воды обрабатывали раствором коагулянта, исходя из заданных дозировок, затем раствором флокулянта (дозировка $0,1\,$ мг/л). Затем воду отстаивали в течение $0,5\,$ часа, в осветленной воде определяли остаточное содержание взвешенных веществ, цветность и ХПК. По результатам анализов рассчитывали эффективность очистки.

Таблица 1 – Уровни и интервалы варьирования факторов

Факторы	Уровни факторов					111
	-α	-1	0	1	α	Шаг
pH (x ₁)	4,5	5,0	5,8	6,5	7,0	0,7
Д, мг Al_2O_3/π (x_2)	20,0	30,1	45,0	59,9	70,0	14,9
τ, мин (х ₃)	1,0	1,6	2,5	3,4	4,0	0,9

Полученные экспериментальные данные использовали для расчета коэффициентов уравнений регрессии и разработки статистических моделей, связывающих значения выходных параметров с условиями их получения.

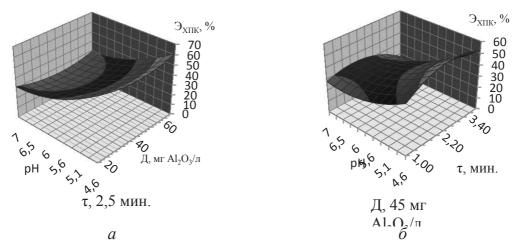


Рисунок 1 — Влияние факторов эксперимента на величину эффективности очистки по ХПК: а — при постоянной продолжительности, б- при постоянной дозировке коагулянта

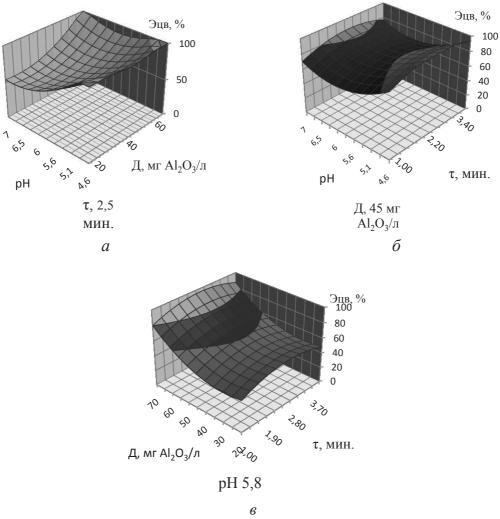


Рисунок 2 — Влияние факторов эксперимента на величину эффективности очистки по цветности: а — при постоянной продолжительности, б- при постоянной дозировке коагулянта, в — при постоянном рН

Уравнения регрессии для выходных параметров:

- 1) Эффективность очистки по ХПК $y = 35.3 7.7x_1 + 0.3x_3 1.7x_1x_3 0.6x_2x_3 + 2.3x_1^2 + 2.6x_2^2 3.4x_3^2$;
- 2) Эффективность очистки по цветности $y = 64.0 9.9x_1 + 6.5x_3 + 1.9x_3 + 4.8x_1x_2 + 6.3x_1^2 + 5.6x_2^2 3.4x_3^2;$
- 3) Остаточное содержание взвешенных веществ $y = 116.6 35.8x_2 7.0x_3 + 6.0x_1x_2 4.5x_1^2 + 10.7x_2^2 + 15.3x_3^2;$

Все вышеприведенные уравнения и модели адекватны: расчетный критерий Фишера оказался меньше табличных значений.

По уравнениям, описывающим математические модели, строили поверхности отклика, которые наглядно демонстрируют влияние режимных параметров на выходные характеристики и представлены на рисунках 1–3.

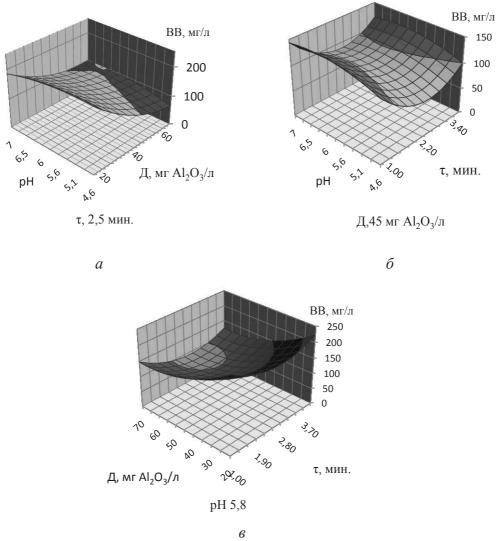


Рисунок 3 — Влияние факторов эксперимента на величину содержания взвешенных веществ в осветленной воде: а — при постоянной продолжительности, б - при постоянной дозировке коагулянта, в — при постоянном рН

На основании представленных данных можно сделать следующий вывод: все три фактора (рН, дозировка коагулянта и продолжительность обработки) оказывают существенное влияние на выходные параметры. При этом максимальные значения эффективности очистки по ХПК и цветности – 60 и 98 %, соответственно – наблюдали при рН 5,0 и ниже, дозировке коагулянта 60...70 мг/л и продолжительности обработки не менее 2,2 минуты. Содержание ВВ в осветленной воде минимально при тех же значениях рН и дозировки оксихлорида алюминия и в интервале т от 2,0 до 2,5 мин.

УДК 676.038:676.244

В. В. Коваль, асп. Е. П. Шишаков, ст. науч. сотр., канд. техн. наук П. А. Чубис, ст. преп., канд. техн. наук eshishakov@mail.ru (БГТУ, г. Минск)

РАСШИРЕНИЕ ОБЛАСТИ ИСПОЛЬЗОВАНИЯ ВТОРИЧНЫХ ВОЛОКНИСТЫХ ПОЛУФАБРИКАТОВ В КОМПОЗИЦИИ БУМАГИ

Согласно данным ООН в 2011 году в европейском регионе было произведено 104,1 млн. т. бумаги и картона [1], при этом доля упаковочных видов составила 40%. Поэтому увеличение доли вторичных волокнистых полуфабрикатов (макулатуры) в композиции данных видов бумаги и картона не только позволит сократить издержки на их производство, но и позволит перейти к «зеленой» экономике.

Целью настоящей работы являлось получение сульфатной хвойной целлюлозы повышенной прочности, которая позволит нивелировать невысокие прочностные характеристики вторичного сырья, и определение допустимой доли целлюлозы и макулатуры в композиции бумаги.

На первом этапе исследования были проведены сульфатные варки хвойной целлюлозы с добавлением полиакрилонитрильных волокон. Варки проводились в лабораторном автоклаве в соответствии с графиком быстрой сульфатной варки. При этом изменяли количество вводимых в автоклав полиакрилонитрильных волокон (ПАН-волокон) от 0,05 до 0,2% от массы абсолютно сухой древесины с шагом 0,05%. Для сравнения свойств полученной целлюлозы была проведена варка без использования ПАН-волокон.

На втором этапе исследования в лабораторных условиях были проведены исследования качественных характеристик полученной сульфатной хвойной небеленой целлюлозы в соответствии с требованиями