УДК 541.1 + 621.785.36 + 621.78.011

Е. К. Юхно¹, Л. А. Башкиров¹, Л. С. Лобановский², С. В. Труханов², С. И. Латушко¹ ¹Белорусский государственный технологический университет ²Научно-практический центр по материаловедению Национальной академии наук Беларуси

МАГНИТНЫЕ СВОЙСТВА ФОТОЛЮМИНОФОРОВ НА ОСНОВЕ ТВЕРДЫХ РАСТВОРОВ La_{1-x} Pr_xInO_3 (0,001 $\leq x \leq$ 0,004) СО СТРУКТУРОЙ ПЕРОВСКИТА

Твердофазным методом проведен синтез однофазных керамических образцов твердых растворов $La_{1-x}Pr_xInO_3$ (0,001 $\leq x \leq 0,004$), $La_{0.996}Pr_{0.004}In_{0.996}Cr_{0.004}O_3$ и исследованы их кристаллическая структура, полевые зависимости намагниченности при 5 К и 300 К и температурные зависимости молярной магнитной восприимчивости. Показано, что температурные зависимости молярной магнитной восприимчивости твердых растворов La_{1-x}Pr_xInO₃ с $x = 0,001; 0,003; 0,004, La_{0.996}$ Pr_{0.004}In_{0.996}Cr_{0.004}O₃ при температурах 25, 60, 73 и 165 К соответственно меняют знак и при более высоких температурах магнитная восприимчивость становится отрицательной. Установлено, что при 300 К увеличение напряженности магнитного поля до 14 Тл приводит к линейному увеличению диамагнитной удельной намагниченности всех исследованных твердых растворов. При температуре 5 К намагниченность твердых растворов La0.997Pr0.003InO3, La0.996Pr0.004InO3, La0.996Pr0.004In0.996Cr0.004O3 при увеличении напряженности магнитного поля до 14 Тл увеличивается нелинейно с постепенным подходом к магнитному насыщению, которое в поле напряженностью 14 Тл не достигается. Установлено, что при 5 К для твердого раствора La0,999Pr0,001InO3, в котором проведено незначительное замещение диамагнитных ионов La^{3+} парамагнитными ионами Pr^{3+} (0,1 мол. %), увеличение магнитного поля до 5 Тл приводит к постепенному возрастанию величины парамагнитной удельной намагниченности. При дальнейшем росте величины магнитного поля до 14 Тл происходит снижение намагниченности и переход ее в диамагнитную область. Удельная намагниченность твердых растворов на основе индата лантана, содержащего более 0,1 мол. % ионов Pr³⁺, является положительной вплоть до 14 Тл.

Ключевые слова: твердый раствор, индат лантана, рентгенофазовый анализ, магнитная восприимчивость, намагниченность.

Ye. K. Yukhno¹, L. A. Bashkirov¹, L. S. Lobanovskiy², S. V. Trukhanov², S. I. Latushko¹ ¹Belarusian State Technological University

²Scientific and Practical Materials Research Centre of the National Academy of Sciences of Belarus

MAGNETIC PROPERTIES OF $La_{1-x}Pr_xInO_3$ (0.001 $\leq x \leq$ 0.004) PEROVSKITE – STRUCTURE PHOTOLUMINESCENT MATERIALS

Solid phase synthesis of single-phased ceramic samples of $La_{1-x}Pr_xInO_3$ (0.001 $\le x \le 0.004$), $La_{0.996}Pr_{0.004}In_{0.996}Cr_{0.004}O_3$ solid solutions was carried out and their crystal structure, fields dependences of magnetization at 5 and 300 K and the temperature dependences of molar magnetic susceptibility were examined. It is shown that the temperature dependences of the molar magnetic susceptibility of $La_{1-x}Pr_xInO_3$ with x = 0.001; 0.003; 0.004, $La_{0.996}Pr_{0.004}In_{0.996}Cr_{0.004}O_3$ solid solutions at temperatures 25, 60, 73 and 165 K respectively change sign, and their magnetic field up to 14 T leads to a linear increasing of the diamagnetic specific magnetization of all solid solutions investigated. At temperature of 5 K magnetization of $La_{0.997}Pr_{0.003}InO_3$, $La_{0.996}Pr_{0.004}InO_3$, $La_{0.996}Pr_{0.004}In_{0.996}Cr_{0.004}O_3$ solid solutions with increasing magnetic field up to 14 T increases non-linearly with a gradual approach to magnetic saturation, but at 14 T it is not achieved. In reference to $La_{0.999}Pr_{0.001}InO_3$ solid solution with a small substitution degree of diamagnetic La^{3+} ions by paramagnetic Pr^{3+} ions (0.1 mol. %) it was found that increasing of the magnetic field up to 5 T leads to a gradual increasing of the paramagnetic specific magnetization and its transition to the diamagnetic region. The specific magnetization of lanthanum indate based solid solutions that contain more than 0.1 mol. % Pr^{3+} ions is positive up to 14 T.

Key words: solid solution, lanthanum indate, X-ray diffraction, magnetic susceptibility, magnetization.

Введение. В настоящее время перспективны исследования люминесцентных материалов на основе индата лантана LaInO₃ в связи с широкими возможностями их применения (например, в светодиодах белого света) [1–4]. Люминесцентные свойства твердых растворов на основе LaInO₃, легированного ионами Pr^{3+} , исследованы в работах [1, 5]. Было установлено, что введение в кристаллическую решетку индата лантана ионов Pr^{3+} позволяет получить фотолюминофор, излучающий в красной и синезеленой областях спектра. Однако интенсивность полос фотолюминесценции ионов Pr³⁺ невелика. В связи с этим в настоящее время проводятся исследования, направленные на поиск сенсибилизатора фотолюминесцентных свойств ионов Pr³⁺ и других парамагнитных редкоземельных элементов. Магнитные свойства твердых растворов со структурой перовскита, содержащих ионы редкоземельных элементов, как и их фотолюминесцентные свойства, определяются схемой энергетических уровней 4f-электронов. Поэтому исследование таких фотолюминофоров на основе LaInO₃ должно быть комплексным, с исследованием как фотолюминесцентных, так и магнитных свойств. В работе [6] были изучены магнитные свойства твердых растворов $La_{1-x}Pr_xInO_3$ с содержанием ионов Pr^{3+} 10 мол. % и более. Однако высокоэффективные фотолюминофоры на основе LaInO3 содержат значительно меньше 10 мол. % ионов Pr^{3+} , но их магнитные свойства не исследованы.

Цель настоящей работы — синтез твердых растворов на основе индата лантана со структурой перовскита $La_{1-x}Pr_xInO_3$ (0,001 $\leq x \leq$ 0,004), $La_{0,996}Pr_{0,004}In_{0,996}Cr_{0,004}O_3$, исследование их кристаллической структуры, полевых зависимостей намагниченности при 5 и 300 К в магнитных полях до 14 Тл, температурных зависимостей молярной магнитной восприимчивости.

Основная часть. Синтез керамических образцов твердых растворов на основе индата лантана LaInO₃ со структурой перовскита La_{1-x}Pr_xInO₃ (0,001 $\leq x \leq 0,004$), La_{0,996}Pr_{0,004}In_{0,996}Cr_{0,004}O₃, являющихся перспективными фотолюминофорами, излучающими в красной и сине-зеленой областях видимого света, получали твердофазным методом из оксидов лантана (La₂O₃), индия (In₂O₃), празеодима (Pr₆O₁₁), хрома (Cr₂O₃). Все реактивы имели квалификацию «х. ч». Оксид лантана был предварительно обожжен в течение 1 ч на воздухе при температуре 1273 К.

Исходные оксиды, взятые в заданном молярном соотношении, смешивали и мололи в планетарной мельнице *Pulverizette* фирмы *Fritch* с добавлением этанола в стаканчиках с шарами из диоксида циркония. Полученную шихту прессовали под давлением 50–75 МПа в таблетки диаметром 25 мм и высотой 5–7 мм и затем обжигали в атмосфере воздуха при температуре 1523 К в течение 6 ч. После предварительного обжига таблетки дробили, перемалывали, прессовали в бруски длиной 30 мм и сечением $5 \times 5 \text{ мм}^2$, которые обжигали при температуре 1523 К в атмосфере воздуха в течение 6 ч.

Рентгеновские дифрактограммы получали на дифрактометре *D8 Advance* фирмы *Bruker* с использованием CuK_{α} -излучения при комнатной температуре в диапазоне углов $2\Theta = 20-80^{\circ}$. Параметры элементарной ячейки кристаллической решетки рассчитаны с помощью рентгеноструктурного табличного процессора RTP. Удельная намагниченность при температурах 5 и 300 К в магнитных полях до 14 Тл и магнитная восприимчивость в интервале температур 5–300 К в магнитном поле 0,86 Тл полученных твердых растворов индатов измерены вибрационным методом на универсальной высокополевой измерительной системе (*Cryogenic Ltd, London, 4IS*) в ГО «Научно-практический центр НАН Беларуси по материаловедению».

Анализ рентгеновских дифрактограмм полученных образцов La_{1-x}Pr_xInO₃ (0,001 $\le x \le 0,004$), La_{0,996}Pr_{0,004}In_{0,996}Cr_{0,004}O₃ (рис. 1) показал, что они являются однофазными и имеют кристаллическую структуру орторомбически искаженного перовскита типа GdFeO₃ ($a < c / \sqrt{2} < b$) [7], параметры элементарной ячейки которых приведены в табл. 1. Из-за небольших количеств легирующих ионов Pr³⁺, Cr³⁺ параметры кристаллической решетки всех исследованных твердых растворов отличаются незначительно от соответствующих параметров кристаллической решетки LaInO₃ [8].

 $3 - La_{0,996}Pr_{0,004}InO_3$; $4 - La_{0,996}Pr_{0,004}InO_3$

Температурные зависимости молярной магнитной восприимчивости в интервале температур 5–300 К (χ_{MOR}) исследованных твердых растворов на основе индата лантана La_{1-r}Pr_rInO₃ $(x = 0,001; 0,003; 0,004), La_{0.996}Pr_{0.004}In_{0.996}Cr_{0.004}O_3$ приведены на рис. 2. Следует отметить, что температурные зависимости молярной магнитной восприимчивости для всех исследованных $La_{0.999}Pr_{0.001}InO_3$, индатов $La_{0.997}Pr_{0.003}InO_3$, $La_{0.996}Pr_{0.004}InO_3$, $La_{0.996}Pr_{0.004}In_{0.996}Cr_{0.004}O_3$ Meняют знак при температурах 25, 60, 73 и 165 К соответственно и при более высоких температурах магнитная восприимчивость становится отрицательной.

Таблица 1

Состав	Параметры кристаллической решетки					
	<i>a</i> , Å	<i>b</i> , Å	<i>c</i> , Å	$V, Å^3$	$\varepsilon = (b-a) / a$	$C/\sqrt{2}$, A
La _{0,999} Pr _{0,001} InO ₃	5,734	5,938	8,228	280,1	0,0356	5,818
La _{0,997} Pr _{0,003} InO ₃	5,741	5,939	8,237	280,8	0,0345	5,824
La _{0,996} Pr _{0,004} InO ₃	5,739	5,942	8,234	280,8	0,0354	5,822
La _{0,996} Pr _{0,004} In _{0,996} Cr _{0,004} O ₃	5,726	5,939	8,227	279,8	0,0372	5,817
LaInO ₃ [8]	5,718	5,932	8,214	278,6	0,0374	5,808

Параметры *a*, *b*, *c* и объем *V* элементарной ячейки, степень орторомбического искажения є для твердых растворов на основе LaInO₃, легированного ионами Pr³⁺, Cr³⁺

Это указывает на то, что для исследованных твердых растворов вклады в магнитную восприимчивость парамагнитных ионов Pr^{3+} , Cr^{3+} и диамагнитной матрицы LaInO₃ отличаются между собой незначительно, причем парамагнитный вклад ионов Pr^{3+} , Cr^{3+} при повышении температуры уменьшается, а диамагнитный вклад от температуры не зависит.

Рис. 2. Температурные зависимости молярной магнитной восприимчивости индатов: *I* – LaInO₃; *2* – La_{0,999}Pr_{0,001}InO₃; *3* – La_{0,997}Pr_{0,003}InO₃; *4* – La_{0,996}Pr_{0,004}InO₃; *5* – La_{0,996}Pr_{0,004}In_{0,996}Cr_{0,004}InO₃

По этой причине температурные зависимости величин обратной молярной восприимчивости (1 / χ_{MOR}) исследованных твердых растворов La_{1-x}Pr_xInO₃ (x = 0,001; 0,003; 0,004) (рис. 3) получены с учетом величины и знака молярной магнитной восприимчивости при определенной температуре для LaInO₃ (рис. 2, кривая *I*). Их анализ показывает, что для всего исследованного интервала температур 5–300 К (рис. 3*a*) закон Кюри – Вейсса (линейная зависимость 1 / χ_{MOR} от *T*) не выполняется. Однако в интервале температур 20–100 К зависимость 1 / χ_{MOR} от *T* является линейной (рис. 3*б*).

Для интервалов температур выполнения закона Кюри – Вейсса (рис. 36) методом наименьших квадратов определены уравнения линейной зависимости $1 / \chi_{мол}$ от $T(1 / \chi_{мол} = a + bT)$. По коэффициентам *a* и *b* этих уравнений рассчитаны молярные постоянные Кюри ($C_{\rm M} = 1 / b$) и постоянные Вейсса ($\Theta = -a / b$) (табл. 2). Эффективный магнитный момент ионов ${\rm Pr}^{3+}$ ($\mu_{\rm эф, Pr}^{3+}$) для твердых растворов La_{1-x}Pr_xInO₃ рассчитывали по формуле (1)

$$\mu_{\rm ab \ Pr^{3+}} = 2,828\sqrt{C_{\rm M}/x}.$$
 (1)

Рис. 3. Температурные зависимости обратной величины молярной магнитной восприимчивости с учетом поправки на диамагнетизм LaInO₃ в исследованном интервале температур 5–300 К (*a*) и в интервале температур выполнения закона Кюри – Вейсса 20–100 К (б) индатов: *I* – La_{0,999}Pr_{0,001}InO₃; *2* – La_{0,997}Pr_{0,003}InO₃; *3* – La_{0,996}Pr_{0,004}InO₃

Полученные значения $\mu_{9\phi, Pr^{3+}}$ для твердых растворов La_{1-x}Pr_xInO₃ с x = 0,001; 0,003; 0,004 равны 4,68; 3,81 и 3,73 μ_B соответственно. Как следует из расчетов, полученные значения эффективного магнитного момента ионов Pr³⁺ для твердых растворов La_{0,997}Pr_{0,003}InO₃, La_{0,996}Pr_{0,004}InO₃ отличаются незначительно от теоретической величины $\mu_{\text{теор, Pr}^{3+}} = 3,58 \ \mu_B$ [9].

Таблица 2

Состав	$C_{\rm M} \cdot 10^2$, см ³ ·К/моль	$\mu_{\mathrm{p}\mathrm{b}},\mu_{\mathrm{B}}$	Θ, Κ	ΔT , K			
La _{0,999} Pr _{0.001} InO ₃	0,2740	4,68 (Pr ³⁺)	-9,9	20-100			
La _{0,997} Pr _{0,003} InO ₃	0,5451	3,81 (Pr ³⁺)	-12,2	20-100			
$La_{0.996}Pr_{0.004}InO_{3}$	0,6956	$3,73 (Pr^{3+})$	-15,2	20-100			
La _{0,996} Pr _{0,004} In _{0,996} Cr _{0,004} O ₃	0,5058	3,18 (Cr ³⁺)	0,6	5-100			

Молярная постоянная Кюри (C_M), постоянная Вейсса (Θ), эффективный магнитный момент ионов Pr³⁺, Cr³⁺ ($\mu_{3\phi}$) в интервале температур выполнения закона Кюри – Вейсса для твердых растворов La_{1-x}Pr_xInO₃ (x = 0,001; 0,003; 0,004), La_{0.996}Pr_{0.004}In_{0.996}Cr_{0.004}O₃

Исключение при определенной температуре вклада ионов Pr^{3+} в магнитную восприимчивость твердого раствора $La_{0,996}Pr_{0,004}In_{0,996}Cr_{0,004}O_3$, содержащего одновременно парамагнитные ионы Pr^{3+} , Cr^{3+} , проведено по формуле (2) путем отнимания от величин молярной магнитной восприимчивости при определенной температуре этого твердого раствора величины молярной магнитной восприимчивости при этой же температуре твердого раствора $La_{0,996}Pr_{0,004}InO_3$:

$$\chi_{Cr^{3+}} = \chi_{La_{0,996}Pr_{0,004}In_{0,996}Cr_{0,004}O_{3}} - \chi_{La_{0,996}Pr_{0,004}InO_{3}} .$$
(2)

Температурная зависимость величин обратных значений $\chi_{Cr^{3+}}$ для исследованного твердого раствора La_{0,996}Pr_{0,004}In_{0,996}Cr_{0,004}O₃ приведена на рис. 4*a*. Для интервала температур выполнения закона Кюри – Вейсса 5–100 К (рис. 4*б*) рассчитаны молярная постоянная Кюри (*C*_M), постоянная Вейсса (Θ), эффективный магнитный момент ионов Cr³⁺ (табл. 2). Полученная величина эффективного магнитного момента иона хрома $\mu_{эф. Cr^{3+}}$, равная 3,18 μ_B , несколько ниже теоретической величины $\mu_{reop. Cr^{3+}} = 3,87 \mu_B$ [9].

При 5 К намагниченность твердых растворов $La_{0,997}Pr_{0,003}InO_3$, $La_{0,996}Pr_{0,004}InO_3$, $La_{0,996}Pr_{0,004}InO_3$, $La_{0,996}Pr_{0,004}InO_{3,996}Cr_{0,004}O_3$ (рис. 5, кривые 3–5) при увеличении напряженности магнитного поля до 14 Тл увеличивается нелинейно с постепенным подходом к магнитному насыщению, которое в поле напряженностью 14 Тл не достигается.

Установлено, что при 5 К для твердого раствора La_{0,999}Pr_{0,001}InO₃ (рис. 5, вставка) увеличение напряженности магнитного поля до 5 Тл приводит к постепенному возрастанию величины парамагнитной удельной намагниченности. При дальнейшем увеличении напряженности магнитного поля происходит снижение величины намагниченности за счет того, что диамагнитный вклад в намагниченность этого твердого раствора становится больше парамагнитного вклада, и в магнитном поле 12,5 Тл она переходит в диамагнитную область.

Удельная намагниченность при 5 К твердых растворов на основе индата лантана, содержа-

щего ионов Pr³⁺ более 0,1 мол. %, является положительной вплоть до магнитного поля 14 Тл.

Рис. 4. Температурная зависимость обратной величины молярной магнитной восприимчивости $1 / \chi_{MOR}$ ионов Cr³⁺ в исследованном интервале температур 5–300 К (*a*) и в интервале температур выполнения закона Кюри – Вейсса 5–100 К (*б*)

для твердого раствора $La_{0,996}Pr_{0,004}In_{0,996}Cr_{0,004}O_3$

Рис. 5. Полевые зависимости удельной намагниченности при 5 К твердых растворов: *I* – LaInO₃; *2* – La_{0,999}Pr_{0,001}InO₃; *3* – La_{0,997}Pr_{0,003}InO₃; *4* – La_{0,996}Pr_{0,004}InO₃; *5* – La_{0,996}Pr_{0,004}In_{0,996}Cr_{0,004}O₃

Как видно на рис. 6, при температуре 300 К удельная намагниченность ($\sigma_{y_{A}}$) всех исследованных твердых растворов на основе LaInO₃ имеет отрицательный знак и при росте величины магнитного поля возрастает практически линейно. Это показывает, что диамагнитная составляющая намагниченности этих твердых растворов при 300 К больше парамагнитной составляющей.

Рис. 6. Полевые зависимости удельной намагниченности при 300 К твердых растворов: $I - La_{0,999}Pr_{0,001}InO_3$; $2 - La_{0,997}Pr_{0,003}InO_3$; $3 - La_{0,996}Pr_{0,004}InO_3$; $4 - La_{0,996}Pr_{0,004}In_{0,996}Cr_{0,004}O_3$

Магнитные моменты ионов Pr^{3+} ($\mu_{Pr^{3+}}$) в твердых растворах $La_{1-x}Pr_xInO_3$ (x = 0,001; 0,003; 0,004) рассчитывали по формуле (3)

$$\mu_{\rm Pr^{3+}} = \frac{(\sigma_{\rm yg\,Lal_{1-x}Pr_xInO_3} - (1-x)\,\sigma_{\rm yg\,LalnO_3})M}{5585x}, (3)$$

где $\sigma_{y_{A} \ La_{1-x} Pr_{x} lnO_{3}}$ – величина удельной намагниченности соответствующего твердого раствора при температуре 5 К в магнитном поле, отвечающем максимальному значению удельной намагниченности (табл. 3); $\sigma_{y_{A} \ LalnO_{3}}$ – удельная намагниченность LalnO₃ при этом магнитном поле при температуре 5 К; *M* – молярная масса соответствующего твердого раствора; 5585 – число, равное произведению величины магнетона Бора на число Авогадро.

Магнитный момент ионов Cr^{3+} ($\mu_{Cr^{3+}}$) в твердом растворе $La_{0,996}Pr_{0,004}In_{0,996}Cr_{0,004}O_3$ при температуре 5 К в магнитном поле напряженностью 14 Тл рассчитывали по формуле (4)

$$\mu_{CC^{3+}} = \frac{(\sigma_{y_{\text{J}} \text{La}_{0,996} \text{Pr}_{0,004} \text{In}_{0,996} \text{Cr}_{0,004} \text{O}_3} - \sigma_{y_{\text{J}} \text{La}_{0,996} \text{Pr}_{0,004} \text{In}_{O_3}})M}{5585 \cdot 0,004}.$$
(4)

Проведенные по формуле (3) расчеты (табл. 3) показали, что полученные значения магнитных моментов ионов Pr^{3+} значительно меньше теоретического значения спин-орбитального магнитного момента иона Pr^{3+} ($\mu_{reop, Pr^{3+}} = 3,58 \ \mu_B$ [9]). Это свидетельствует о том, что магнитные поля, при которых наблю-

даются максимальные значения величины парамагнитной намагниченности (табл. 3), не приводят к полному магнитному упорядочению парамагнитных моментов ионов Pr^{3+} .

Таблица 3

Удельная намагниченность (σ_{уд}) и магнитный момент ионов Pr³⁺, Cr³⁺ (µ) для твердых растворов La_{1-x}Pr_xInO₃ (x = 0,001; 0,003; 0,004), La_{0,996}Pr_{0,004}In_{0,996}Cr_{0,004}O₃ при температуре 5 К

Состав	$\sigma_{yд}$, Гс·см ³ /г	μ, μ _Β
La _{0,999} Pr _{0,001} InO ₃	0,01397	0,75
	(о _{макс} при 5 Тл)	(Pr^{3+})
La _{0,997} Pr _{0,003} InO ₃	0,06775	1,22
	(при 13,5 Тл)	(Pr^{3+})
La _{0,996} Pr _{0,004} InO ₃	0,08673	1,17
	$(\sigma_{{}_{Makc}}$ при 9Тл)	(Pr^{3+})
La _{0,996} Pr _{0,004} In _{0,996} Cr _{0,004} O ₃	0,35146	3,81
	(при 14 Тл)	(Cr^{3+})

Заключение. В работе твердофазным методом из соответствующих оксидов получены твердые растворы $La_{1-x}Pr_xInO_3$ (x = 0,001; 0,003;0,004), La_{0,996}Pr_{0.004}In_{0.996}Cr_{0.004}O₃. Установлено, что все полученные образцы являются однофазными и имеют кристаллическую структуру орторомбически искаженного перовскита типа GdFeO₃. Показано, что температурные зависимости молярной магнитной восприимчивости твердых растворов $La_{1-x}Pr_xInO_3$ с x = 0,001; 0,003; 0,004, La0.996Pr0.004In0.996Cr0.004O3 при температурах 25, 60, 73 и 165 К соответственно меняют знак и при более высоких температурах становятся отрицательными. Это указывает на то, что для исследованных твердых растворов на основе LaInO₃ вклады в магнитную восприимчивость парамагнитных ионов Pr^{3+} , Cr^{3+} и диамагнитной матрицы LaInO3 отличаются между собой незначительно, причем парамагнитный вклад ионов Pr³⁺, Cr³⁺ при повышении температуры уменьшается, а диамагнитный вклад от температуры не зависит. Установлено, что при 300 К увеличение напряженности магнитного поля до 14 Тл приводит к линейному увеличению диамагнитной удельной намагниченности всех исследованных твердых растворов. При температуре 5 К намагниченность твердых растворов La_{0,997}Pr_{0,003}InO₃, La_{0,996}Pr_{0,004}InO₃, La_{0,996}Pr_{0,004}In_{0,996}Cr_{0,004}O₃ при увеличении напряженности магнитного поля до 14 Тл увеличивается нелинейно с постепенным подходом к магнитному насыщению, которое, однако, не достигается. Установлено, что при 5 К для твердого раствора La_{0 999}Pr_{0 001}InO₃, в котором проведено незначительное замещение ионов

 La^{3+} парамагнитными ионами Pr^{3+} (0,1 мол. %), увеличение магнитного поля до 5 Тл приводит к постепенному возрастанию величины парамагнитной удельной намагниченности. Однако при дальнейшем росте величины магнитного поля до 14 Тл происходит снижение намагни-

ченности и в магнитных полях выше 12,5 Тл она является диамагнитной. Удельная намагниченность твердых растворов на основе индата лантана, содержащего более 0,1 мол. % ионов Pr³⁺, является положительной при приложенных магнитных полях до 14 Тл.

Литература

1. Liu X., Lin J. Synthesis and luminescent properties of LaInO₃: RE^{3+} (RE = Sm, Pr and Tb) nanocrystalline phosphors for field emission displays // Solid State Sci. 2009. Vol. 11. P. 2030–2036.

2. Laksminarasimhan N., Varadaraju U. V. Luminescent host lattices, LaInO₃ and LaGaO₃–a reinvestigation of luminescence of d^{10} metal ions // Mater. Res. Bull. 2006. Vol. 41. P. 724–731.

3. Luminescent properties of a new red-emitting phosphor based on $LaInO_3$ for LED / An Tang [et al.] // Optoelec. Adv. Mater. 2011. Vol. 5. No. 10. Pp. 1031–1034.

4. The luminescence of Bi³⁺ in LaInO₃, and some other perovskites / L. I. Van Steensel [et al.] // Mater. Res. Bull. 1995. Vol. 30, issue 11. P. 1359–1362.

5. Башкиров Л. А., Кандидатова И. Н., Першукевич П. П. Сенсибилизирующее воздействие ионов хрома (III) на фотолюминесценцию активированного ионами празеодима люминофора на основе индата лантана // Доклады Национальной академии наук Беларуси. 2014. Т. 58. № 1. С. 81–84.

6. Магнитная восприимчивость и эффективный магнитный момент ионов празеодима индатов Pr_{1-x}La_xInO₃ как перспективных материалов лазерной техники / И. Н. Кандидатова [и др.] // Ресурсои энергосберегающие технологии и оборудование, экологически безопасные технологии: материалы Междунар. науч.-техн. конф. Минск, 24–26 ноября 2010 г. Ч. 2. С. 286–289.

7. Powder Diffraction File. Swarthmore: Joint Committee on Powder Diffraction Standart: Card no. 00–047–0067.

8. Кандидатова И. Н., Башкиров Л. А., Петров Г. С. Термический анализ, тепловое расширение индатов празеодима-лантана Pr_{1-x}La_xInO₃ // Труды БГТУ. Сер. 3: Химия и технология неорган. в-в. 2012. С. 29–31.

9. Кринчик Г. С. Физика магнитных явлений. М.: Изд-во МГУ, 1976. 367 с.

References

1. Liu X., Lin J. Synthesis and luminescent properties of LaInO₃: RE^{3+} (RE = Sm, Pr and Tb) nanocrystalline phosphors for field emission displays. *Solid State Sci*, 2009, vol. 11, pp. 2030–2036.

2. Laksminarasimhan N., Varadaraju U. V. Luminescent host lattices, LaInO₃ and LaGaO₃ – a reinvestigation of luminescence of d^{10} metal ions. *Mater. Res. Bull*, 2006, vol. 41, pp. 724–731.

3. Tang An., Zhang D., Yang L., Wang X. Luminescent properties of a new red-emitting phosphor based on LaInO₃ for LED. *Optoelec. Adv. Mater*, 2011, vol. 5, no. 10, pp. 1031–1034.

4. Van Steensel L. I., Bokhove S. G., Van de Craats A. M. The luminescence of Bi³⁺ in LaInO₃, and some other perovskites. *Mater. Res. Bull*, 1995, vol. 30, issue 11, pp. 1359–1362.

5. Bashkirov L. A., Kandidatova I. N., Pershukevich P. P. Chromium (III) ion as a sensitizer of photoluminescence of ion-activated praseodymium of phosphor based on lanthanum indate. *Doklady Natsional'noy akademii nauk Belarusi* [Reports of the National academy of sciences of Belarus], 2014, vol. 58, no. 1, pp. 81–84 (In Russian).

6. Kandidatova I. N., Bashkirov L. A., Petrov G. S. [Magnetic susceptibility and effective magnetic moment of praseodymium ions in $Pr_{1-x}La_xInO_3$ indates as perspective laser materials]. *Materialy Mezhdunar. nauch.-tekhn. konf.* (*«Resurso- i energosberegayushchie tekhnologii i oborudovanie, ecologicheski bezopasnye tekhnologii»*) [Materials of the International scientific and engineering conference ("Resourse- and energy-saving technologies and equipment, ecology safely technologies")]. Minsk, 2010, pp. 286–289 (In Russian).

7. Powder Diffraction File. Swarthmore: *Joint Committee on Powder Diffraction Standart*: Card no. 00–047–0067.

8. Kandidatova I. N., Bashkirov L. A., Petrov G. S. Thermal analysis, thermal expansion of praseodymium-lanthanum indates $Pr_{1-x}La_xInO_3$. *Trudy BGTU* [Proceedings of BSTU], series III, Chemistry and Technology of Inorganic Substances, 2012, pp. 29–31 (In Russian).

9. Krinchik G. S. *Fizika magnitnykh yavleniy* [Physics of magnetic Phenomena]. Moscow, MGU Publ., 1976. 367 p.

Информация об авторах

Юхно Елена Казимировна – аспирант кафедры физической и коллоидной химии. Белорусский государственный технологический университет (220006, г. Минск, ул. Свердлова, 13а, Республика Беларусь). E-mail: Palma-2010@yandex.by

Башкиров Леонид Андреевич – доктор химических наук, профессор, профессор кафедры физической и коллоидной химии. Белорусский государственный технологический университет (220006, г. Минск, ул. Свердлова, 13а, Республика Беларусь). E-mail: Bashkirov@belstu.by

Лобановский Леонид Сергеевич – кандидат физико-математических наук, старший научный сотрудник. Научно-практический центр по материаловедению Национальной академии наук Беларуси. (220072, г. Минск, ул. П. Бровки, 19, Республика Беларусь). Е-mail: Lobanov@physics.by

Труханов Сергей Валентинович – кандидат физико-математических наук, старший научный сотрудник. Научно-практический центр по материаловедению Национальной академии наук Беларуси. (220072, г. Минск, ул. П. Бровки, 19, Республика Беларусь). E-mail: VSM@physics.by

Латушко Сергей Игоревич – студент. Белорусский государственный технологический университет (220006, г. Минск, ул. Свердлова, 13а, Республика Беларусь). E-mail: Smer444@mail.ru

Information about the authors

Yukhno Elena Kazimirovna – PhD student, the Department of Physical and Colloid Chemistry. Belarusian State Technological University (13a, Sverdlova str., 220006, Minsk, Republic of Belarus). E-mail: Palma-2010@yandex.by

Bashkirov Leonid Andreevich – DSc (Chemistry), Professor, Professor, the Department of Physical and Colloid Chemistry. Belarusian State Technological University (13a, Sverdlova str., 220006, Minsk, Republic of Belarus). E-mail: Bashkirov@belstu.by

Lobanovskiy Leonid Sergeevich – PhD (Physics and Mathematics), Senior Researcher. Scientific and Practical Materials Research Centre of The National Academy of Sciences of Belarus (19, P. Brovki str., 220072, Minsk, Republic of Belarus). E-mail: Lobanov@physics.by

Trukhanov Sergey Valentinovich – PhD (Physics and Mathematics), Senior Researcher. Scientific and Practical Materials Research Centre of The National Academy of Sciences of Belarus (19, P. Brovki str., 220072, Minsk, Republic of Belarus). E-mail: VSM@physics.by

Latushko Sergey Igorevich – student. Belarusian State Technological University (13a, Sverdlova str., 220006, Minsk, Republic of Belarus). E-mail: Smer444@mail.ru

Поступила 03.03.2016