Г.Г. Тульский, проф., д-р техн. наук; Т.А. Белоус, асп.; О.Л. Матрунчик, асп.; М.П. Османова, асп. (НТУ "ХПИ", г. Харьков)

ВЛИЯНИЕ МАТЕРИАЛА АНОДА НА КИНЕТИКУ АНОДНЫХ ПРОЦЕССОВ В РАСТВОРАХ УКСУСНОЙ КИСЛОТЫ

Введение. Пероксиуксусная кислота (ПОУК) относится к группе сильных окислителей и является источником активного кислорода. Используется как противомикробное средство для обработки медицинского оборудования, дезинфицирующее средство, пастеризатор на пивоваренных и винных заводах, в промышленности для синтеза эпоксидных соединений, и т. п.

При электролизе растворов карбоновых кислот и их солей на платиновом аноде возможно протекание нескольких конкурирующих реакций: выделение кислорода; реакция Кольбе; образование пероксидных соединений. На механизм этих реакций существенное влияние оказывают концентрация ионов СН₃СОО и наличие добавок, которые, встраиваясь в двойной электрический слой, меняют механизм и кинетику электродного процесса.

Известно, что роданиды тормозят процесс выделения кислорода [1] и в их присутствии полностью подавляется реакция Кольбе [2], что облегчает электрохимический синтез ПОУК [3]. Перспективной является замена платины на более доступные материалы, которые позволят повысить эффективность электрохимического синтеза.

Применение электрохимических технологий для получения ПОУК непосредственно на месте применения исключает потери целевого продукта в результате его хранения.

Методика эксперимента. Вольт-амперные зависимости получали с помощью импульсного потенциостата ПИ-50-1 с программатором ПР-8. Скорость развертки потенциала 10 мВ/с.

Поляризационные исследования проводили в электрохимической ячейке при температуре $18-22\,^{0}$ С. Анод: 1) платиновая пластина с рабочей поверхностью $1,32\,\,\mathrm{cm}^{2};\,2)$ металлическая пластинка с покрытием из свинца оксид (IV) с рабочей поверхностью $1\,\mathrm{cm}^{2}$. В качестве вспомогательного электрода использовали платину. Электрод сравнения — хлорид-серебряный. Все значения потенциалов пересчитаны относительно водородного электрода.

Электролиты готовили из концентрированной уксусной кислоты марки «хч». pH растворов уксусной кислоты определяли на pH-150 M.

Результаты эксперимента и их обсуждение. Для реализации анодного процесса были выбраны электродные материалы с высоким

перенапряжением выделения кислорода — платина и свинец оксид (IV). Эти материалы обладают высокой стойкостью в исследуемых растворах.

На рис. 1 представлены анодные потенциодинамические зависимости, снятые на платиновом электроде в растворах уксусной кислоты без добавки (а) и с добавкой (б) роданида калия.

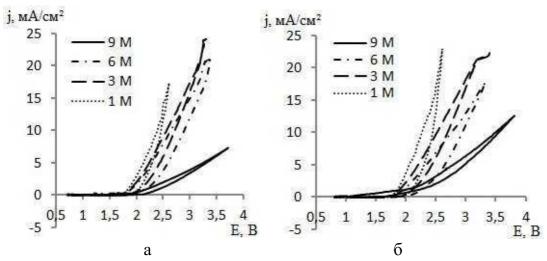


Рисунок 1 – Анодные поляризационные зависимости на платине в растворах CH₃COOH без добавки (а) и с добавкой (б) роданида калия

Подъём тока начинается при потенциалах выше 1,7 В (рис. 1, а) и сопровождается только выделением кислорода. В рассматриваемом диапазоне потенциалов этот процесс, возможно, протекает через образование пероксида водорода:

$$2H_2O = H_2O_2 + 2H^+ + 2e, E_p = 1.776 - 0.0591 \text{ pH};$$
 (1)

$$2H_2O_2 = O_2 + 2H_2O$$
, $E_p = 0.682 - 0.0591$ pH. (2)

Значения равновесных потенциалов и рН для исследуемых растворов уксусной кислоты приведены в табл. 1.

Известно, что платина является катализатором разложения пероксида водорода [1]. Поэтому единственным продуктом анодной реакции является O_2 . С целью торможения выделения кислорода целесообразно проводить процесс электролиза в концентрированных растворах уксусной кислоты с добавкой промоторов образования перекисной группы.

Известно, что роданид калия тормозит процесс выделения кислорода, адсорбируясь на поверхности электрода. Поскольку скорость электрохимического процесса в растворах с добавкой возросла (рис. 1, б), можно утверждать, что добавление в раствор KCNS облегчает про-

текание образования пероксида водорода. Что и было подтверждено качественным анализом.

Таблица 1 – Значения равновесных потенциалов с учетом рН

Концентрация СН ₃ СООН,	рН	$E_{H_2O/H_2O_2}^{p}$,	$E^{p}_{O_2/H_2O_2},$	$E^{p}_{H_2O/O_2}$,
моль · дм ⁻³	•	В	В	В
9	1,91	1,663	0,569	1,116
6	2,00	1,658	0,564	1,110
3	2,14	1,650	0,555	1,101
1	2,38	1,635	0,541	1,087

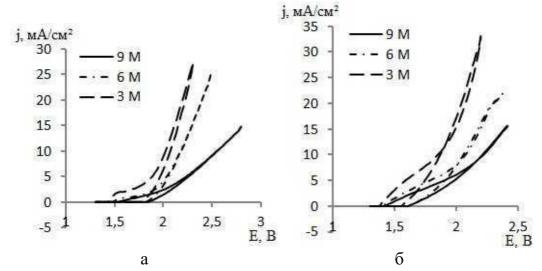


Рисунок 2 – Анодные поляризационные зависимости на свинце оксид (IV) в растворах CH₃COOH без добавки (а) и с добавкой (б) роданида калия

На рис. 2 представлены анодные потенциодинамические зависимости, снятые на электроде из свинца оксид (IV) в растворах уксусной кислоты без добавки (а) и с добавкой (б) роданида калия.

Подъем тока начинается при потенциалах выше 1,4 В и сопровождается процессом выделения кислорода:

$$2H_2O = O_2 + 4H^+ + 4e, E_p = 1.228 - 0.0591 \text{ pH}.$$
 (3)

Подъем тока при потенциалах выше 1,7 В связан с совмещенным протеканием процессов (1) и (2).

Более положительные значения потенциалов обратного хода на анодах из свинца оксид (IV) в сравнении с прямым указывают на то, что десорбция роданида с поверхности оксидносвинцового электрода требует больших энергетических затрат чем адсорбция. Постепенное уменьшение разницы между адсорбцией и десорбцией при увеличении концентрации уксусной кислоты связано с конкурентной адсорбцией роданида и молекул CH₃COOH.

Сравнив рис. 1 и 2 можно утверждать, что скорость электрохимических процессов на свинце оксиде (IV) больше чем на платине, и они протекают при меньших потенциалах анодной поляризации. Это указывает на перспективность использования свинца оксида (IV) в качестве анодного материала для электролиза водных растворов СН₃СООН.

Выводы. Для электрохимического синтеза ПОУК необходимо применение анодных материалов с высоким перенапряжением выделения кислорода и высокими адсорбционными свойствами в отношении ацетат-ионов. Исследования кинетики электролиза растворов СН₃СООН показали, что использование свинца оксида (IV) в качестве анодного материала позволяет получить более высокие плотности тока при меньших энергетических затратах по сравнению с платиной.

ЛИТЕРАТУРА

- 1 Горбачов А.К. Технічна електрохімія. Ч. І. Електрохімічні виробництва хімічних продуктів: Підручник / За ред. д-ра техн. наук, проф. Б.І. Байрачного. Х.: ВАТ «Видавництво «Прапор»», 2002. 254 с.
- 2 Хидиров Ш.Ш., Хибиев Х.С. Реакция электросинтеза Кольбе в условиях модифицирования поверхности платинового анода SCN-ионами / Ш.Ш. Хидиров, Х.С. Хибиев // Электрохимия. 2005. Т.41. С. 1319-1322.
- 3 Пат. 2216537 Россия, МПК 7 С 07 С 409/24. Способ получения пероксиуксусной кислоты.

УДК 621.35

А.А. Терещенко, асп.; Ю.В. Мирошниченко, асп.; Г.Г. Тульский, проф., д-р техн. наук; С.А. Лещенко, доц., канд. техн. наук (НТУ «ХПИ», г. Харьков)

АКТИВАЦИЯ ГАЗОДИФФУЗИОННОГО ЭЛЕКТРОДА

Вступление. Значительное снижение удельного расхода электроэнергии при электрохимическом синтезе водорода возможно лишь за счет изменения природы анодного процесса, например, при реализации сульфатнокислотного цикла с деполяризацией анодного процесса SO₂. Практическое внедрение сульфатнокислотного цикла сдерживается из-за отсутствия доступных каталитически активных электродных материалов и стойких протонпроводящих материалов для разделения катодного и анодного пространств.