А.С. Каташинский, И. С. Макеева, В. Г. Хоменко, В.З. Барсуков

(Киевский Национальный Университет Технологий и Дизайна, Украина)

МОДЕЛИРОВАНИЕ АДСОРБЦИОННЫХ СВОЙСТВ ШПИНЕЛИ MnCo₂O₄

Поиск доступных и эффективных катализаторов для кислородного электрода топливного элемента и металл — воздушных источников тока является актуальной проблемой автономной энергетики.

Квантово-химические расчеты электронной структуры могут обеспечить важную информацию к экспериментальным данным об особенностях электронного строения вещества. Анализ квантово - химических кластерных моделей полезен как для объяснения свойств существующих материалов, так и для прогнозирования адсорбционных и каталитических свойств новых соединений.

Оксиды переходных металлов, и особенно смеси нескольких оксидов, например шпинели $NiCo_2O_4$, $FeCo_2O_4$, $MnCo_2O_4$ образуют существенную неоднородность поверхности, легко адсорбируют кислород на поверхности [1] и, как показывают экспериментальные исследования, могут демонстрировать значительный каталитический эффект [2].

Геометрическая и электронная структура кристалла $MnCo_2O_4$ моделировалась кластером $MnCo_2O_{11}H_{13}$. Неэмпирические квантово – химические расчеты структурных параметров, распределение электронной плотности в кластере $MnCo_2O_{11}H_{13}$ и адсорбционных комплексах (АК) кислорода и его соединений расчитаны с использованием формализма самосогласованного поля MO ЛКАО Хартри-Фока-Рутана в 6-31 базисе функций Гаусса [3].

В качестве адсорбционных центров Z выбраны катионы кобальта Co_1 и Co_4 плоскости (001). Квантово – химические расчеты выполнены с полной оптимизацией всех структурных параметров. Точность оптимизации структурных параметров определялась максимальным значением 10^{-5} Хартри/Бор производных энергии по декартовым координатам. Полная энергия кластера и адсорбционных комплексов рассчитывалась с точностью 10^{-5} а.е.э.

Энергия адсорбционной связи Δ Еадс рассчитывалась как разница полной энергии адсорбционного комплекса Еак и суммы энергий кластера Екл и адсорбата Еад:

$$\Delta$$
Еадс = Еак – (Екл + Еад).

Из результатов расчетов следует, что на поверхности молекулярного кластера могут образовываться промежуточные комплексы кислорода К27-O₂ и его соединений (табл.1, 2).

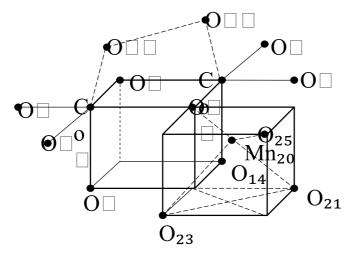


Рисунок - Модель адсорбционного комплекса MnCo₂O₁₁H₁₃-O₂

Показано, что в исследуемых АК вследствие взаимодействия между адсорбатами O_2 , O_2H^- , $H_2O_2H^-$, $2H_2O$ и кластером изменяются межъядерные расстояния и происходит перераспределение электронной плотности между связями и силовыми центрами. Изменение свойств окружения активных центров является причиной изменения их адсорбционных и каталитических свойств.

Физическая адсорбция кислорода. Из результатов расчетов следует, что в модели физической адсорбции молекула $O_{2aдс}$ теряет 0.033 е электронной плотности. Поэтому происходит стабилизация связи O_{28} - O_{29} , что количественно проявляется в уменьшении ее длины до 1.189 Å. Равновесная длина адсорбционной связи $R(Co_4-O_{29}) = 2.344$ Å, энергия связи $\Delta Eagc$ не превышает -29.401 кДж/моль. Благодаря явлению физической адсорбции в приповерхностном пространстве катализатора увеличивается концентрация молекул атмосферного кислорода, в результате этого увеличивается частота столкновений молекул кислорода с активными центрами и ускоряются процессы хемосорбции и катализа.

Хемосорбция кислорода. В процессе первой стадии каталитической реакции восстановления кислорода $2Z + O_2 \rightarrow 2ZO_2$ молекула кислорода адсорбируется в форме изогнутого фрагмента. Между адсорбированной молекулой и катионами кластера (рис.) образуются две неравноценные адсорбционные связи: сильная донорно-акцепторная $Co_4 - O_{29}$ и слабая электростатическая Co_1 - O_{28} (табл.1). Дополнительный вклад в стабилизацию связи между кластером и $O_{2адс}$ вносит

поляризованная ковалентная связь $O_{28}-O_5$ (параметры связи: $R(O_5-O_{28})=1.484$ Å, $p(O_5-O_{28})=0.754$).

В результате обратного $3d\pi$ - $2p\pi$ взаимодействия с 3d-AO катиона кобальта на свободную $2p\pi$ -MO* молекулы $O_{2aдc}$ смещается $d\pi$ -электронная плотность. Увеличение заселенности $2p\pi$ - MO* в $O_{2aдc}$ вызывает дестабилизацию связи O_{28} - O_{29} и переход молекулы $O_{2aдc}$ в возбужденное состояние. Дестабилизация связи O_{28} - O_{29} количественно проявляется в ее значительном удлинении и уменьшении порядка связи $p(O_{28}$ - $O_{29})$ (табл.1). Хемосорбированная молекула кислорода по отношению к кластеру проявляет акцепторные свойства, в результате этого на O_{2agc} смещается электронная плотность порядка -0.501 е.

Таблица 1 - Равновесные длины связей R(A-B), А́ и соответствующие им порядки связей р(A-B) в адсорбционных комплексах

V оминакан I	Связь О ₂₈ -О ₂₉		Связь Со ₁ -О ₂₈		Связь Со ₄ -О ₂₉				
Комплексы	$R(O_{28}-O_{29})$	$p(O_{28}-O_{29})$	$R(Co_1-O_{28})$	$p(Co_1-O_{28})$	$R(Co_4-O_{29})$	p(Co ₄ - O ₂₉)			
K27- O ₂	1.486	0.787	2.871	-	1.938	0.386			
К27-О ₂ Н-	1.513	0.734	1.963	0.375	1.963	0.304			
K27-H ₂ O ₂	1.439	0.838	2.112	0.097	2.339	0.153			
K27-H ₂ O ₂ H-	2.459	-	1.953	0.321	1.898	0.506			
K27-2H ₂ O	2.725	_	1.984	0.245	2.120	0.231			

Вторая стадия реакции $2ZO_2 + 2e^- + H^+ \rightarrow 2ZO_2H^-$ характеризуется увеличением вклада ковалентной составляющей в адсорбционные связи Co_1 - O_{28} и Co_4 - O_{29} , а также значительным увеличением энергии адсорбции. Это является следствием включення в состав АК двух электронов. В образованной в результате реакции $2ZO_2H^- + H^+ \rightarrow 2ZH_2O_2$, молекуле H_2O_2 под действием электрического поля присоединенного протона происходит перераспределение электронной плотности. Вследствие этого стабилизируется связь O_{28} - O_{29} и значительно дестабилизируется связь между полученной молекулой H_2O_2 и кластером (табл.1, 2).

Вследствие неоднородности поверхности между адсорбционными центрами и хемосорбированной $O_{2 \text{адс}}$ образуются связи разной энергии, что делает возможным протекание параллельных реакций восстановления кислорода по 2-х электронному и 4-х электронному механизмам.

При малых значениях Δ Еадс образованная молекула H_2O_2 десорбируется, т.е. процесс восстановления кислорода происходит по 2-х электронному механизму и заканчивается на стадии образования перекиси водорода; при больших значениях Δ Еадс процесс восстановления кислорода происходит по 4-х электронному механизму в соответствии с прохождением реакций:

- 1) $2Z H_2O_2 + 2e^- + H^+ \rightarrow 2Z H_2O_2H^-$
- 2) $2Z H_2O_2H^- + H^+ \rightarrow 2Z H_2O_2H_2 \rightarrow 2Z + 2H_2O$.

В комплексе К27- $H_2O_2H^-$ равновесное расстояние между атомами кислорода в $O_{2адс}$ превышает 2.459 Å, что свидетельствует о диссоциации связи О-О в $O_{2адc}$ (табл.1). Процесс восстановления кислорода заканчивается на стадии образования двух молекул H_2O , которые адсорбированы на разных адсорбционных центрах (табл.1).

Таблица 2 - Энергия адсорбционной связи ДЕадс, кДж/моль

Энергия	Адсорбаты							
адсорбции	O_2	O ₂ H ⁻	H_2O_2	H_2OOH^-	2H ₂ O			
ΔЕадс	-191,655	-529,83	-134,946	-493,57	-247.314			

Прохождение реакций по 2-х и 4-х электронным механизмам дает возможность объяснить экспериментально установленное количество электронов (3,7 е) электрохимического восстановления кислорода на поверхности $MnCo_2O_4$.

Выводы

- 1. Основной причиной активации хемосорбированной молекулы кислорода является смещение электронной плотности с поверхности катализатора на O_{2anc} .
- 2. При небольших значениях энергии адсорбции H_2O_2 кислород восстанавливается по 2-х электронному механизму до образования перекиси водорода; при больших значениях энергии адсорбции H_2O_2 восстановление кислорода происходит по 4-х электронному механизму до образования воды. Результаты расчета согласуются с экспериментальными данными, представленными в работе [2].

ЛИТЕРАТУРА

- 1. О. В. Крылов, В. Ф. Киселев. Адсорбция и катализ на переходных металлах и их оксидах М.: Химия, 1981. 288 с.
- 2. Khomenko, K.V. Lykhnytskyi, V.Z. Barsukov. Oxygen reduction at the surface of polymer/carbon and polymer/carbon/spinel catalysts in aqueous solutions // Electrochim. Acta. 2013. V. 104– p.391–399.
 - 3. http://clssic.chem.msu.su./gran/gamess/index.html