НЕАРГАНІЧНАЯ ХІМІЯ

УДК 541.124+546.431

У ЦЗЭ¹, Л. А. БАШКИРОВ¹, С. В. СЛОНСКАЯ², С. В. ТРУХАНОВ³, Л. С. ЛОБАНОВСКИЙ³, А. И. ГАЛЯС³

МАГНИТНЫЕ СВОЙСТВА ВЫСОКОКОЭРЦИТИВНЫХ ФЕРРИТОВ $Sr_{1-x}Gd_xFe_{12-x}Co_xO_{19} (0 \le x \le 0,5)$

¹Белорусский государственный технологический университет ²Белорусский государственный аграрный технический университет ³Научно-практический центр НАН Беларуси по материаловедению

(Поступила в редакцию 14.02.2014)

Введение. Ферриты $BaFe_{12}O_{19}$, $SrFe_{12}O_{19}$ со структурой минерала магнетоплюмбита являются одноосными ферримагнетиками, имеют большую величину коэрцитивной силы (H_c), хорошую химическую стабильность, низкую цену и широко используются для изготовления постоянных магнитов [1–4]. До середины 90-х годов XX века улучшение магнитных свойств постоянных магнитов из феррита $SrFe_{12}O_{19}$ в основном достигалось за счет модификации технологии их изготовления (это направление почти исчерпано). В настоящее время перспективным направлением поиска новых магнитотвердых материалов для изготовления керамических постоянных магнитов с улучшенными магнитными характеристиками является изучение твердых растворов на основе феррита $SrFe_{12}O_{19}$, в котором часть ионов Sr^{2+} замещена ионами редкоземельного элемента Ln^{3+} (Ln - La, Pr, Nd, Sm) и эквивалентное количество ионов Fe^{3+} замещено ионами M^{2+} (M - Zn, Co) [5–8]. В работе [9] приведены сведения о фазовом составе образцов ферритов системы $Sr_{1-x}Gd_xFe_{12-x}Co_xO_{19}$ ($0 \le x \le 0,5$), а также результаты исследования их кристаллической структуры, электропроводности и теплового расширения.

В настоящей работе приведены результаты исследования магнитных свойств образцов ферритов системы $Sr_{1-x}Gd_xFe_{12-x}Co_xO_{19}$ (0 $\leq x \leq 0.5$).

Методика эксперимента. Керамические образцы ферритов системы $Sr_{1-x}Gd_xFe_{12-x}Co_xO_{19}$ (x=0; 0,1; 0,2; 0,3; 0,4; 0,5) синтезировали твердофазным методом из оксидов гадолиния (Gd_2O_3), железа (Fe_2O_3), кобальта (Co_3O_4) и карбоната стронция ($SrCO_3$). Все реактивы имели квалификацию ч.д.а. Перемешивание и помол исходных соединений, взятых в необходимом соотношении, проводили в планетарной мельнице «Puluerizette 6» фирмы Fritsch с добавлением этанола. Полученную шихту прессовали под давлением 50–75 МПа в таблетки диаметром 19 мм и высотой 5–7 мм, которые затем обжигали при 1473 К на воздухе в течение 8 ч. После предварительного обжига таблетки дробили, мололи, прессовали в таблетки диаметром 9 мм, высотой 2–3 мм и бруски размером 5×5×30 мм³, которые обжигали на воздухе при 1473 К в течение 4 ч.

Рентгеновские дифрактограммы образцов ферритов $Sr_{1-x}Gd_xFe_{12-x}Co_xO_{19}$ ($0 \le x \le 0,5$) получены на дифрактометре Bruker D8 ADVANCE (излучение CuK_{α}) при комнатной температуре. Удельная намагниченность насыщения и параметры петли гистерезиса удельной намагниченности образцов ферритов цилиндрической формы длиной 5,0–5,4 мм и диаметром 1–1,2 мм были измерены вибрационным методом на универсальной высокополевой измерительной системе (Cryogenic Ltd London, 41S) в магнитом поле до 14 Тл при температурах 5 и 300 К. Температура

Кюри (T_c) исследованных ферритов определена по температурным зависимостям удельной намагниченности (σ_{vn}), измеренной методом Фарадея в магнитном поле 0,86 Тл (684,4 кА/м).

Результаты и их обсуждение. Рентгенофазовый анализ показал, что образцы ферритов $Sr_{1-x}Gd_xFe_{12-x}Co_xO_{19}$ с $x \ge 0,1$, кроме основной фазы со структурой магнетоплюмбита, содержали

Рис. 1. Температурные зависимости удельной намагниченности σ_{y_A} образцов ферритов системы $Sr_{1-x}Gd_xFe_{12-x}Co_xO_{19}$ при x=0 (1); 0,1 (2); 0,2 (3); 0,3 (4); 0,4 (5); 0,5 (6)

Рис. 2. Петля гистерезиса удельной намагниченности $\sigma_{_{V\!M}}$ при температуре 5 K для $SrFe_{12}O_{19}$

ной фазы со структурой магнетоплюмбита, содержали примесную фазу α -Fe₂O₃, количество которой постепенно увеличивалось при повышении x от 0,1 до 0,5. В образцах с $x \ge 0,2$ в небольшом количестве присутствовала также фаза феррита гадолиния Gd₃Fe₅O₁₂ со структурой граната. В образцах с $x \ge 0,3$ присутствовали фазы GdFeO₃, CoFe₂O₄, а в образцах с x = 0,4; 0,5 – фаза Gd₂O₃. Установлено [9], что предельная величина степени замещения x ионов Sr²⁺ ионами Gd³⁺ в феррите SrFe₁₂O₁₉ чуть меньше 0,1.

На рис. 1 для образцов ферритов $Sr_{1-x}Gd_xFe_{12-x}Co_xO_{19}$ ($0 \le x \le 0,5$) приведены температурные зависимости удельной намагниченности (σ_{yd}), измеренной методом Фарадея в интервале температур 77–900 К, позволившие определить температуру Кюри (T_c) этих ферритов, значения которой приведены в таблице. Установлено, что увеличение параметра состава *x* образцов $Sr_{1-x}Gd_xFe_{12-x}Co_xO_{19}$ сначала приводит к незначительному уменьшению температуры Кюри от 727 К для $SrFe_{12}O_{19}$ до 725 К для феррита с x = 0,1, а при дальнейшем увеличении *x* до 0,5 она немного возрастает и для образцов с x = 0,2; 0,3; 0,4; 0,5 равна 729, 731, 737 и 745 К соответственно.

На рис. 2 в качестве примера приведена петля гистерезиса удельной намагниченности для $SrFe_{12}O_{19}$, измеренной при температуре 5 К в магнитных полях до 14 Тл (11 140,8 кА/м). Видно, что намагниченность насыщения феррита стронция $SrFe_{12}O_{19}$ достигается в полях около 3 Тл (2387,3 кА/м), выше которых происходит небольшое безгистерезисное возрастание намагниченности за счет парапроцесса. Подобные петли магнитного гистерезиса удельной намагниченности при температурах 5 и 300 К в магнитных полях до 14 Тл получены и для других образцов ферритов $Sr_{1-x}Gd_xFe_{12-x}Co_xO_{19}$ (0<x < 0,5). Однако на рис. 3 для лучшей наглядности они приведены для магнитных

Температура Кюри (T_c), удельная самопроизвольная намагниченность (σ₀), удельная намагниченность насыщения (σ_s), самопроизвольная намагниченность одной формульной единицы (n₀), удельная остаточная намагниченность (σ_r), коэрцитивная сила (_σH_c) образцов ферритов Sr_{1-x}Gd_xFe_{12-x}Co_xO₁₉ при 5 и 300 К

	T	<i>T</i> =5 K					<i>T</i> =300 K			
x	K K	$σ_0, A \cdot m^2/\kappa \Gamma$	n _o , μB	$σ_s, A \cdot m^2/kr$	$σ_r$, A·M ² /KΓ	_о <i>H</i> _c , кА/м	n _o , μB	$σ_s, A \cdot m^2/kr$	$σ_r$, A·M ² /KΓ	$_{\sigma}H_{c}$, кА/м
0	727	97,05	18,45	96,13	43,55	143,64	12,69	66,21	32,33	259,14
0,1	725	100,41	19,22	99,09	45,49	154,75	13,16	68,74	33,60	253,60
0,2	729	94,74	_	93,15	42,68	154,36	_	62,34	30,29	219,84
0,3	731	93,52	_	91,76	39,62	126,09	_	60,74	27,97	194,74
0,4	737	76,73	_	75,73	33,37	140,18	-	56,65	24,63	196,40
0,5	745	76,29	_	75,65	31,00	125,28	-	48,10	22,10	184,70

Рис. 3. Петли гистерезиса удельной намагниченности σ_{уд} при температурах 5 К (*l*) и 300 К (*2*) для Sr_{1-x}Gd_xFe_{12-x}Co_xO₁₉ при *x*=0,1 (*a*), 0,2 (*b*), 0,3 (*b*), 0,4 (*c*)

полей лишь до 3 Тл, т. е. без участка линейной зависимости σ_{yd} от H, но которые в интервале магнитных полей 3–14 Тл присутствуют на всех экспериментально полученных петлях магнитного гистерезиса исследованных ферритов. Путем экстраполяции линейного участка зависимости σ_{yd} от H до H=0 для SrFe₁₂O₁₉ (рис. 2) и для всех других исследованных ферритов при температурах 5 и 300 К определены значения удельной самопроизвольной намагниченности (σ_0), значения которой приведены в таблице. Для однофазных образцов ферритов Sr_{1-x}Gd_xFe_{12-x}Co_xO₁₉ с x = 0, 0,1 по формуле

$$n_{\rm o}=\frac{\sigma_{\rm o}M}{5585},$$

где M – молярная масса соответствующего феррита, 5585 – величина, равная произведению величины магнетона Бора (μ_B) на число Авогадро, рассчитаны значения самопроизвольной намагниченности (n_o), выраженной в магнетонах Бора на одну формульную единицу феррита (таблица). За величину удельной намагниченности насыщения (σ_s) соответствующего феррита принималась величина удельной намагниченности, измеренной в магнитном поле 3 Тл.

Данные, приведенные в таблице, показывают, что величины σ_s для ферритов Sr_{1-x}Gd_xFe_{12-x}Co_xO₁₉ лишь незначительно меньше величин самопроизвольной намагниченности (σ_0). Величины самопроизвольной намагниченности (σ_0). Величины самопроизвольной намагниченности (σ_0) одной формульной единицы исследованных ферритов Sr_{1-x}Gd_xFe_{12-x}Co_xO₁₉ со степенью замещения x=0,1 при температурах 5 и 300 K на 4,2 и 3,7 % соответственно больше, чем для базового феррита SrFe₁₂O₁₉ (x=0). Увеличение самопроизвольной намагниченности (n_0) для феррита Sr_{1-x}Gd_xFe_{12-x}Co_xO₁₉ с x=0,1 на 0,77 μ_B по сравнению с величиной n_0 для SrFe₁₂O₁₉ показывает, что ионы Co²⁺, магнитный момент которых в высокоспиновом состоянии равен 3 μ_B , располагаются в *A*-подрешетке феррита со структурой магнетоплюмбита. В соответствии с двухподрешеточной моделью Гортера [10] величина самопроизвольной намагниченности (n_0) при температуре 0 K феррита SrFe₁₂O₁₉ определяется разницей магнитных моментов двух антиферромагнито ориентированных подрешеток *B* и *A*, в которых расположены соответственно 8 и 4 ионов Fe³⁺, магнитный момент которого в высокоспиновом состоянии равен 5 μ_B . Для полученного нами феррита SrFe₁₂O₁₉ $n_0 = 18,45$ μ_B , несколько меньше теоретиче-

ского значения $n_0 = (8-4)5 = 20 \ \mu_B$. Если предположить, что магнитные моменты ионов Co²⁺ в А-подрешетке направлены антипараллельно магнитным моментам ионов Fe³⁺ этой подрешетки, то величина n_0 твердого раствора $Sr_{1-x}Gd_xFe_{12-x}Co_xO_{19}$ с x=0,1 определяется формулой: $n_0 = (8 \cdot 5) - (3,9 \cdot 5 - 0,1 \cdot 3) = 20,8 \mu_B$. Эта величина n_0 для твердого раствора $Sr_{1-x}Gd_xFe_{12-x}Co_xO_{19}$ с x=0,1 на 0,8 μ_B больше, чем для феррита SrFe₁₂O₁₉. Экспериментально полученное значение n_0 для твердого раствора с x=0,1 на 0,77 μ_B больше, чем для феррита SrFe₁₂O₁₉, что практически совпадает с теоретической величиной. Это подтверждает сделанное нами предположение об антипараллельной ориентации магнитных моментов ионов Co²⁺ и Fe³⁺, расположенных в *A*-подрешетке твердого раствора Sr_{0.9}Gd_{0.1}Fe_{11.9}Co_{0.1}O₁₉. Однако при дальнейшем увеличении степени замещения от x=0,2 до x=0,5 наблюдается уменьшение величины самопроизвольной удельной намагниченности σ_0 и σ_s . Отметим, что твердый раствор феррита $Sr_{1-x}Gd_xFe_{12-x}Co_xO_{19}$ с x=0,1при 300 К имеет значение самопроизвольной намагниченности (n_0) больше, а коэрцитивной силы $(_{\sigma}H_{c})$ меньше, чем у феррита SrFe₁₂O₁₉ на 3,7 и 2,1 % соответственно. При дальнейшем увеличении параметра состава x в образцах ферритов $Sr_{1-x}Gd_xFe_{12-x}Co_xO_{19}$ от 0,1 до 0,5 наблюдается уменьшение величин коэрцитивной силы (_гH_c) (таблица) при температурах 5 и 300 К. При этом для всех исследованных ферритов $Sr_{1-x}Gd_xFe_{12-x}Co_xO_{19}$ повышение температуры от 5 до 300 К приводит к значительному увеличению коэрцитивной силы (таблица). Ранее такое поведение $_{\sigma}H_{c}$ при повышении температуры от 5 до 300 К наблюдалось для феррита BaFe₁₂O₁₉ [3] и для ферритов системы Sr_{1-x}Pr_xFe_{12-x}Zn_xO₁₉ [7]. На рис. 4 видно, что увеличение температуры от 5 до 300 К приводит к постепенному повышению $_{\sigma}H_{c}$ для феррита Sr_{1-x}Gd_xFe_{12-x}Co_xO₁₉ с x=0,1 от величины 154,75 до 253,60 кА/м.

Рис. 4. Температурная зависимость коэрцитивной силы $_{\sigma}H_c$ для феррита Sr_{1-x}Gd_xFe_{12-x}Co_xO₁₉ с x=0,1

Выводы. Твердофазным методом получены образцы ферритов Sr_{1-x}Gd_xFe_{12-x}Co_xO₁₉ (x=0; 0,1; 0,2; 0,3; 0,4; 0,5). Рентгенофазовый анализ показал, что образцы с $x \ge 0,1$ были неоднофазными. Образцы с $x \ge 0,2$, кроме основной фазы твердых растворов ферритов Sr_{1-x}Gd_xFe_{12-x}Co_xO₁₉ со структурой магнетоплюмбита, содержали примесные фазы α -Fe₂O₃, Gd₃Fe₅O₁₂.

Установлено, что увеличение параметра состава x образцов ферритов $Sr_{1-x}Gd_xFe_{12-x}Co_xO_{19}$ сначала приводит к незначительному уменьшению температуры Кюри от 727 К для $SrFe_{12}O_{19}$ до 725 К для феррита с x=0,1, а при дальнейшем увеличении x до 0,5 она немного возрастает и для образцов с x=0,5 составляет 745 К.

Показано, что самопроизвольная намагниченность (n_0) для твердого раствора Sr_{1-x}Gd_xFe_{12-x}Co_xO₁₉ с x=0,1 при 5 и 300 К на 4,2 и 3,7 % соответственно больше, чем для феррита SrFe₁₂O₁₉ при этих температурах.

Литература

1. Смит Я., Вейн Х. Ферриты. Физические свойства и практическое применение. М.:ИЛ, 1962.

- 2. Летюк Л. М. и др. Технология производства материалов магнитоэлектроники. М.: Металлургия, 1994.
- 3. Крупичка С. Физика ферритов и родственных им магнитных окислов. М.: Мир, 1976. Т. 2.
- 4. Pullar R. C. // Progress in Materials Science. 2012. Vol. 57. P. 1191–1334.

5. *Taguchi H.* et al. // 7th International Conference on Ferrites, Bordeaux, September 3–6 1996 / Bordeaux Convention Center France. Bordeaux, 1996. P. 3–4.

- 6. Obara J., Yamamoto H. // J. of the Japan Society of Powder and Powder Metallurgy. 2000. Vol. 47, N7. P. 796-800.
- 7. Полыко Д.Д. и др. // Неорганические материалы. 2011. Т. 47, № 1. С. 81 86.
- 8. Wu Ze et al. // Inorganic Materials. 2014 Vol. 50, N 3. P. 285–290.
- 9. У Цзэ и др. // Весці НАН Беларусі. Сер. хім. навук. 2014. №2. С. 5-9.
- 10. Гортер Е.В. // УФН. 1955. Т. 57, №2. С. 279–346.

Wu ZE, L.A. BASHKIROV, S. V. SLONSKAYA, S. V. TRUHANOV, L.S. LOBANOVSKI, A.I. GALYAS

MAGNETIC PROPERTIES OF $\operatorname{Sr}_{1-x}\operatorname{Gd}_x\operatorname{Fe}_{12-x}\operatorname{Co}_x\operatorname{O}_{19}$ ($0 \le x \le 0,5$) HEXAFERRITES

Summary

 $Sr_{1-x}Gd_xFe_{12-x}Co_xO_{19}$ (x = 0; 0.1; 0.2; 0.3; 0.4; 0.5) ferrites have been prepared by solid-state method under air at 1473 K. It has been found that increasing the value of x first leads to a slight decrease in the Curie temperature, from 727 K for the base ferrite $SrFe_{12}O_{19}$ to 725 K of solid solution $Sr_{0.9}Gd_{0.1}Fe_{11.9}Co_{0.1}O_{19}$, but with x further increasing, the Curie temperature rises reaching 745 K at x=0.5. It has been found that at 5 K and 300 K, spontaneous magnetization (n_0) values are respectively 4.2 and 3.7 % higher for solid solution $Sr_{0.9}Gd_{0.1}Fe_{11.9}Co_{0.1}O_{19}$ than for the base ferrite $SrFe_{12}O_{19}$.