УДК 541.124 + 546.431

ЦЗЭ У¹, Л. А. БАШКИРОВ¹, С. В. СЛОНСКАЯ², С. В. ШЕВЧЕНКО¹, В. Н. ШАМБАЛЁВ³

МАГНИТНЫЕ СВОЙСТВА ПОСТОЯННЫХ МАГНИТОВ НА ОСНОВЕ ФЕРРИТА СТРОНЦИЯ М-ТИПА С ЗАМЕЩЕНИЕМ ИОНОВ Sr²⁺ ИОНАМИ Sm³⁺, Gd³⁺ И ИОНОВ Fe³⁺ ИОНАМИ Zn²⁺, Co²⁺

¹Белорусский государственный технологический университет, ²Белорусский государственный аграрный технический университет, ³Опытно-производственное республиканское унитарное предприятие «Феррит»

(Поступила в редакцию 24.03.2015)

Введение. Феррит стронция SrFe₁₂O₁₉ со структурой магнетоплюмбита является одноосным ферримагнетиком, имеет большую величину коэрцитивной силы (Н_c) и широко используется для изготовления постоянных керамических магнитов [1-3]. До середины 90-х годов XX века улучшение магнитных свойств постоянных магнитов из феррита SrFe₁₂O₁₉ в основном достигалось за счет модификации технологии их изготовления. В настоящее время перспективным направлением поиска новых магнитотвердых материалов для изготовлении керамических постоянных магнитов с улучшенными магнитными характеристиками является изучение твердых растворов на основе феррита SrFe₁₂O₁₉, в котором часть ионов Sr²⁺ замещена ионами редкоземельного элемента Ln^{3+} ($Ln - La^{3+}$, Pr^{3+} , Nd^{3+} , Sm^{3+}) и для сохранения условия электронейтральности эквивалентное количество ионов Fe³⁺ замещено ионами M²⁺ (M – Zn²⁺, Co²⁺, Mn²⁺, Cu²⁺, Fe²⁺). Так, в работе [4] установлено, что в системе $Sr_{1-x}La_xFe_{12-x}Zn_xO_{19}$ повышение степени замещения x до 0,3 приводит к постепенному увеличению намагниченности и уменьшению коэрцитивной силы, а анизотропный постоянный магнит, изготовленный из твердого раствора Sr_{0.7}La_{0.3}Fe_{11.7}Zn_{0.3}O₁₉, имеет величину энергетического произведения $(BH)_{\text{max}} = 41 \text{ кДж/м}^3$. В работе [5] показано, что в системе $\text{Sr}_{1-x}\text{La}_x\text{Fe}_{12-x}\text{Co}_x\text{O}_{19}$ частичное замещение ионов стронция Sr^{2+} ионами La^{3+} и ионов Fe^{3+} ионами Co^{2+} до x = 0,2 приводит к уменьшению намагниченности, но одновременно с этим происходит увеличение поля анизотропии, что позволяет из твердого раствора $Sr_{0.8}La_{0.2}Fe_{11.8}Co_{0.2}O_{19}$ изготавливать анизотропные постоянные магниты с величиной (*BH*)_{max} = 38,4 кДж/м³. В последние годы опубликован ряд работ, в которых исследованы кристаллическая структура, магнитные и электрические свойства ферритов систем Sr_{1-x}Ln_xFe_{12-x}M_xO₁₉ (Ln – La, Pr, Nd, Sm; M – Zn, Co, Мп, Си, Fe) [6–15]. В работе [6] изучены кристаллическая структура, спектры Мессбауэра ферритов системы $Sr_{1-x}Sm_xFe_{12}O_{19}$, в которых проведено частичное замещение ионов Sr^{2+} феррита $SrFe_{12}O_{19}$ ионами Sm³⁻ ⁺ (x = 0; 0,125; 0,25) и для сохранения условия электронейтральности эквивалентное количество ионов Fe³⁺ переходит в ионы Fe²⁺. В работе [7] изучены кристаллическая структура, магнитные свойства ферритов систем $Sr_{1-x}Ln_xFe^{3+}_{12-x}Fe^{2+}_xO_{19}$ (Ln – La, Pr, Nd, Sm) и показано, что из исследованных ферритов наибольшей величиной коэрцитивной силы H_c ≈ 348 кА/м (4372 Э) обладает твердый раствор Sr_{0.8}Sm_{0.2}Fe³⁺_{11.8}Fe²⁺_{0.2}O₁₉.

Цель настоящей работы – изготовление изотропных постоянных магнитов из порошков высококоэрцитивных ферритов $Sr_{1-x}Sm_xFe_{12-x}Zn_xO_{19}$, $Sr_{1-x}Sm_xFe_{12-x}Co_xO_{19}$, $Sr_{1-x}Gd_xFe_{12-x}Zn_xO_{19}$, $Sr_{1-x}Gd_xFe_{12-x}Zn_xO_{19}$, $Sr_{1-x}Gd_xFe_{12-x}Co_xO_{19}$, $Ba_{0,5}Sr_{0,5})_{1-x}Sm_xFe_{12-x}Co_xO_{19}$ (x = 0; 0,1; 0,2; 0,3), в которых проведено частичное гетеровалентное замещение ионов Sr^{2+} в феррите $SrFe_{12}O_{19}$ ионами Sm^{3+} , Gd^{3+} и эквивалентное количество ионов Fe^{3+} ионами Zn^{2+} , Co^{2+} , и изучение магнитной индукции (B_r), коэрцитивной силы ($_BH_c$), энергетического произведения (BH)_{тах} этих изотропных постоянных магнитов.

Методика эксперимента. Твердофазным методом были получены порошки ферритов $Sr_{1-x}Sm_{x}Fe_{12-x}M_{x}O_{19}, Sr_{1-x}Gd_{x}Fe_{12-x}M_{x}O_{19} (M^{2+} - Zn^{2+}, Co^{2+}), (Ba_{0,5}Sr_{0,5})_{1-x}Sm_{x}Fe_{12-x}Co_{x}O_{19} (x = 0; X^{2+})_{1-x}Sm_{x}Fe_{12-x}Co_{x}O_{19} (x = 0; X^{2+})_{1-x}Sm_{x}Fe_$ 0,1; 0,2; 0,3) и феррита-алюмината SrFe9.5Al2.5O19. Смеси порошков соответствующих оксидов самария (Sm₂O₃), гадолиния (Gd₂O₃), железа (Fe₂O₃), цинка (ZnO), кобальта (Co₃O₄), алюминия (Al_2O_3) и карбонатов стронция (SrCO₃), бария (BaCO₃), взятых в определенных стехиометрических соотношениях, подвергали помолу в планетарной мельнице «Pulverizette 6» фирмы Fritsch с добавлением этанола в течение 20 мин. Полученную шихту прессовали под давлением 50-75 МПа в таблетки диаметром 25 мм и высотой 5–7 мм, которые затем обжигали на подложках из оксида алюминия при температуре 1473 К на воздухе в течение 8 ч. После первого обжига таблетки дробили, перемалывали, прессовали в таблетки диаметром 25 мм и высотой 5–7 мм, которые повторно обжигали на воздухе при температуре 1473 К в течение 4 ч. После охлаждения таблетки дробили, перемалывали и полученные порошки исследованных ферритов и ферритаалюмината SrFe_{9.5}Al_{2.5}O₁₉ использовали для изготовления образцов изотропных постоянных магнитов. На основе полученных порошков ферритов были приготовлены две партии шихты для изготовления изотропных постоянных магнитов. Одна партия была приготовлена из порошков ферритов $Sr_{1-x}Sm_xFe_{12-x}M_xO_{19}$, $Sr_{1-x}Gd_xFe_{12-x}M_xO_{19}$ (M²⁺ – Zn²⁺, Co²⁺), (Ba_{0.5}Sr_{0.5})_{1-x}Sm_xFe_{12-x}Co_xO₁₉) (x = 0; 0, 1; 0, 2; 0, 3) и содержала только широко используемую комплексную добавку (1 % CaCO₃, 0,25 % SiO₂, 0,3 % H₃BO₃ от массы данных ферритов). Другая партия, кроме этой комплексной добавки, содержала также 0,75 мас. % высококоэрцитивного SrFe_{9.5}Al_{2.5}O₁₉. Полученные смеси порошков ферритов и соответствующих добавок подвергали помолу в планетарной мельнице с добавлением этанола в течение 20 мин. После помола в шихту из пипетки добавляли 3-4 капли 10 %-ного водного раствора поливинилового спирта и в агатовой ступке тщательно перемешивали. Образцы прессовали в форме цилиндра (d = 15 мм, h = 12-13 мм), которые обжигали на воздухе при 1433 К в течение 2 ч. Магнитные характеристики $(B_r, {}_BH_c, (BH)_{max})$ полученных изотропных постоянных магнитов определяли индукционно-импульсным методом на установке УИ–200–М в импульсном магнитном поле 1,5 Тл.

Результаты и их обсуждение. Анализ величин магнитных свойств полученных изотропных постоянных магнитов, приведенных в таблице, показывает, что кроме магнита, изготовленного из феррита $Sr_{0,8}Gd_{0,2}Fe_{11,8}Co_{0,2}O_{19}$, для исследованных изотропных магнитов, содержащих добавку $SrFe_{9,5}Al_{2,5}O_{19}$, значения коэрцитивной силы ($_{B}H_{c}$) и энергетического произведения (BH)_{max} были больше, чем для магнитов из этих ферритов, но без добавки $SrFe_{9,5}Al_{2,5}O_{19}$. Например, величины коэрцитивной силы ($_{B}H_{c}$) и энергетического произведения (BH)_{max} изотропного постоянного магнита из $SrFe_{12}O_{19}$, содержавшего добавку $SrFe_{9,5}Al_{2,5}O_{19}$, на 37,5 и 16,0 % соответственно больше, чем величины этих параметров для магнита, изготовленного также из $SrFe_{12}O_{19}$, но без добавки $SrFe_{9,5}Al_{2,5}O_{19}$. Величины коэрцитивной силы ($_{B}H_{c}$) и энергетического произведения (BH)_{max} изотропного постоянного магнита из $SrFe_{12}O_{19}$, содержавшего добавку $SrFe_{9,5}Al_{2,5}O_{19}$, на 37,5 и 16,0 % соответственно больше, чем величины этих параметров для магнита, изготовленного также из $SrFe_{12}O_{19}$, но без добавки $SrFe_{9,5}Al_{2,5}O_{19}$. Величины коэрцитивной силы ($_{B}H_{c}$) и энергетического произведения (BH)_{max} изотропного постоянного магнита из феррита $Sr_{0,8}Sm_{0,2}Fe_{11,8}Zn_{0,2}O_{19}$, содержащего дополнительную добавку $SrFe_{9,5}Al_{2,5}O_{19}$, были на 34,5 и 19,9 % соответственно больше величин этих магнитных параметров у магнита, изготовленного из этого феррита $Sr_{0,8}Sm_{0,2}Fe_{11,8}Zn_{0,2}O_{19}$, но без дополнительной добавки $SrFe_{9,5}Al_{2,5}O_{19}$.

Значения кажущейся плотности ($\rho_{\text{каж}}$) образцов изотропных магнитов, изготовленных из исследованных ферритов и содержащих добавку SrFe_{9,5}Al_{2,5}O₁₉, были незначительно больше значений кажущейся плотности ($\rho_{\text{каж}}$) образцов магнитов, изготовленных из этих ферритов, но не содержащих добавку SrFe_{9,5}Al_{2,5}O₁₉. Это указывает на более интенсивное протекание процессов спекания при обжиге образцов, содержавших добавку SrFe_{9,5}Al_{2,5}O₁₉, так как кристаллическая структура этой добавки изоморфна структуре ферритов Sr_{1-x}Sm_xFe_{12-x}M_xO₁₉, Sr_{1-x}Gd_xFe_{12-x}M_xO₁₉ (M²⁺ – Zn²⁺, Co²⁺), (Ba_{0.5}Sr_{0.5})_{1-x}Sm_xFe_{12-x}Co_xO₁₉.

Анализ данных, приведенных в таблице, показывает, что лишь в системах $Sr_{1-x}Sm_xFe_{12-x}Co_xO_{19}$, $(Ba_{0,5}Sr_{0,5})_{1-x}Sm_xFe_{12-x}Co_xO_{19}$ повышение степени замещения *x* до 0,1 приводит к увеличению остаточной магнитной индукция (B_r), коэрцитивной силы ($_BH_c$) и энергетического произведения (BH)_{тах} изотропных постоянных магнитов, изготовленных из этих ферритов, как содержащих добавку SrFe_{9,5}Al_{2,5}O₁₉, так без этой добавки, и при дальнейшем увеличении параметра состава *x* до 0,3 эти магнитные параметры уменьшаются (рис. 1). В других исследованных системах

	Кажущаяся плотность ($\rho_{\text{каж}}$), остаточная магнитная индукция (B_r), коэрцитивная сила ($_BH_c$),
	и энергетическое произведение (<i>BH</i>) _{тах} изотропных постоянных магнитов
ИЗ	ферритов Sr _{1-x} Ln _x Fe _{12-x} M _x O ₁₉ (Ln ³⁺ - Sm ³⁺ , Gd ³⁺ ; M ²⁺ - Co ²⁺ , Zn ²⁺) и (Ba _{0,5} Sr _{0,5}) _{1-x} Sm _x Fe _{12-x} Co _x O ₁₉

Coorres	Без добавки SrFe _{9,5} Al _{2,5} O ₁₉				С добавкой SrFe _{9,5} Al _{2,5} O ₁₉					
Состав	$\rho_{\kappa a \varkappa}$, г/см ³	<i>B_r</i> , T	$_{B}H_{c}$, кА/м	(<i>BH</i>) _{max,} кДж/м ³	$\rho_{\kappa a \varkappa}$, г/см ³	<i>B_r</i> , T	_в H _c , кА/м	(<i>BH</i>) _{max,} кДж/м ³		
$Sr_{1-x}Sm_xFe_{12-x}Zn_xO_{19}$										
SrFe ₁₂ O ₁₉	4,17	0,188	80	4,49	4,26	0,191	110	5,21		
$Sr_{0,9}Sm_{0,1}Fe_{11,9}Zn_{0,1}O_{19}$	4,06	0,187	46	2,71	4,12	0,193	48	2,89		
Sr _{0,8} Sm _{0,2} Fe _{11,8} Zn _{0,2} O ₁₉	4,15	0,190	84	4,67	4,34	0,199	113	5,60		
Sr _{0,7} Sm _{0,3} Fe _{11,7} Zn _{0,3} O ₁₉	4,20	0,165	61	2,88	4,31	0,168	64	3,04		
$\mathrm{Sr}_{1-x}\mathrm{Sm}_{x}\mathrm{Fe}_{12-x}\mathrm{Co}_{x}\mathrm{O}_{19}$										
SrFe ₁₂ O ₁₉	4,17	0,188	80	4,49	4,26	0,191	110	5,21		
Sr _{0,9} Sm _{0,1} Fe _{11,9} Co _{0,1} O ₁₉	4,19	0,207	108	5,74	4,20	0,210	115	5,93		
Sr _{0,8} Sm _{0,2} Fe _{11,8} Co _{0,2} O ₁₉	4,11	0,181	74	4,28	4,15	0,180	79	4,36		
Sr _{0,7} Sm _{0,3} Fe _{11,7} Co _{0,3} O ₁₉	4,21	0,175	65	3,68	4,28	0,170	75	3,82		
$(Ba_{0,5}Sr_{0,5})_{1-x}Sm_xFe_{12-x}Co_xO_{19}$										
$(Ba_{0,5}Sr_{0,5})Fe_{12}O_{19}$	4,13	0,183	95	4,39	4,17	0,188	111	5,20		
$(Ba_{0,5}Sr_{0,5})_{0,9}Sm_{0,1}Fe_{11,9}Co_{0,1}O_{19}$	4,09	0,196	115	5,42	4,12	0,192	145	6,14		
$(Ba_{0,5}Sr_{0,5})_{0,8}Sm_{0,2}Fe_{11,8}Co_{0,2}O_{19}$	4,01	0,165	72	3,12	4,07	0,169	78	3,65		
$(Ba_{0,5}Sr_{0,5})_{0,7}Sm_{0,3}Fe_{11,7}Co_{0,3}O_{19}$	4,14	0,147	48	2,02	4,17	0,147	51	2,09		
$\mathrm{Sr}_{1-x}\mathrm{Gd}_x\mathrm{Fe}_{12-x}\mathrm{Zn}_x\mathrm{O}_{19}$										
SrFe ₁₂ O ₁₉	4,17	0,188	80	4,49	4,26	0,191	110	5,21		
Sr _{0,9} Gd _{0,1} Fe _{11,9} Zn _{0,1} O ₁₉	4,16	0,175	56	3,51	4,24	0,190	59	3,77		
Sr _{0,8} Gd _{0,2} Fe _{11,8} Zn _{0,2} O ₁₉	4,04	0,153	67	2,68	4,06	0,157	72	2,98		
Sr _{0,7} Gd _{0,3} Fe _{11,7} Zn _{0,3} O ₁₉	4,06	0,130	40	1,69	4,09	0,128	56	1,77		
$\operatorname{Sr}_{1-x}\operatorname{Gd}_{x}\operatorname{Fe}_{12-x}\operatorname{Co}_{x}\operatorname{O}_{19}$										
SrFe ₁₂ O ₁₉	4,17	0,188	80	4,49	4,26	0,191	110	5,21		
Sr _{0,9} Gd _{0,1} Fe _{11,9} Co _{0,1} O ₁₉	4,06	0,155	66	2,50	4,09	0,157	71	2,94		
$Sr_{0,8}Gd_{0,2}Fe_{11,8}Co_{0,2}O_{19}$	3,92	0,148	75	2,62	3,97	0,152	65	2,31		
Sr _{0,7} Gd _{0,3} Fe _{11,7} Co _{0,3} O ₁₉	4,00	0,134	58	1,96	4,03	0,136	59	1,99		

 $Sr_{1-x}Sm_xFe_{12-x}Zn_xO_{19}$, $Sr_{1-x}Gd_xFe_{12-x}M_xO_{19}$ (M²⁺ – Zn²⁺, Co²⁺) увеличение параметра состава *x* до 0,3 приводит к постепенному уменьшению величин магнитных параметров B_{r} , $_BH_c$ и (BH)_{max} (таблица).

Следовательно, только для ферритов систем $Sr_{1-x}Sm_xFe_{12-x}Co_xO_{19}$, $(Ba_{0,5}Sr_{0,5})_{1-x}Sm_xFe_{12-x}Co_xO_{19}$ зависимость остаточной магнитной индукция (B_r) , коэрцитивной силы $(_BH_c)$ и энергетического произведения $(BH)_{max}$ от параметра состава x достигает наибольшего значения при x = 0,1 как для изотропных постоянных магнитов, содержащих добавку $SrFe_{9,5}Al_{2,5}O_{19}$ (рис. 1), так и без нее (таблица). Значения $B_{r,B}H_c$ и $(BH)_{max}$ изотропного постоянного магнита из $Sr_{0,9}Sm_{0,1}Fe_{11,9}Co_{0,1}O_{19}$, содержащего добавку $SrFe_{9,5}Al_{2,5}O_{19}$, больше на 9,9, 4,5 и 13,8 % соответственно (таблица), чем эти параметры изотропного постоянного магнита из gepputa $SrFe_{12,0}O_{19}$, также содержащего дополнительную добавку $SrFe_{9,5}Al_{2,5}O_{19}$. Значения $B_{r,B}H_c$ и $(BH)_{maxc}$ изотропного постоянного магнита из феррита ($Ba_{0,5}Sr_{0,5})_{0,9}Sm_{0,1}Fe_{11,9}Co_{0,1}O_{19}$, содержащего добавку $SrFe_{9,5}Al_{2,5}O_{19}$, больше на 2,1, 30,6 и 18,1 % соответственно (таблица), чем эти магнитные параметры изотропного постоянного магнита из феррита ($Ba_{0,5}Sr_{0,5})Fe_{12}O_{19}$, также содержащего добавку $SrFe_{9,5}Al_{2,5}O_{19}$.

Фотографии поверхности скола образцов изотропных постоянных магнитов, полученных из ферритов $Sr_{1-x}Sm_xFe_{12-x}Co_xO_{19}$, $(Ba_{0,5}Sr_{0,5})_{1-x}Sm_xFe_{12-x}Co_xO_{19}$ с добавкой $SrFe_{9,5}Al_{2,5}O_{19}$ и без добавки $SrFe_{9,5}Al_{2,5}O_{19}$, представлены на рис. 2, 3 соответственно. Из рис. 2, 3 видно, что большинство кристаллитов (зерен) образцов изотропных постоянных магнитов, изготовленных из ферритов $Sr_{1-x}Sm_xFe_{12-x}Co_xO_{19}$, $(Ba_{0,5}Sr_{0,5})_{1-x}Sm_xFe_{12-x}Co_xO_{19}$, не имеют четкой огранки и их размер

Рис. 1. Зависимости остаточной магнитной индукции (B_r) (*a*), коэрцитивной силы $(_BH_c)$ (*b*), энергетического произведения $(BH)_{max}$ (*b*) изотропных постоянных магнитов из ферритов $Sr_{1-x}Sm_xFe_{12-x}Co_xO_{19}$, $(Ba_{0,5}Sr_{0,5})_{1-x}Sm_xFe_{12-x}Co_xO_{19}$, содержащих добавку $SrFe_{9,5}Al_{2,5}O_{19}$, от параметра состава x ($Sr_{1-x}Sm_xFe_{12-x}Co_xO_{19}(I)$, $(Ba_{0,5}Sr_{0,5})_{1-x}Sm_xFe_{12-x}Co_xO_{19}(I)$)

практически одинаков как для магнитов, содержащих дополнительную добавку $SrFe_{9,5}Al_{2,5}O_{19}$, так и без нее. При этом размер кристаллитов образцов изотропных магнитов, изготовленных из ферритов с x = 0; 0,1, составляет 1–2 мкм, а с x = 0,2 он равен 2–3 мкм.

Рис. 2. Электронно-микроскопические снимки поверхности сколов образцов изотропных постоянных магнитов, полученных из ферритов $Sr_{1-x}Sm_xFe_{12-x}Co_xO_{19}$ (×5000) (x = 0 (a), 0,1 (e), 0,2 (d) – без дополнительной добавки $SrFe_{9,5}Al_{2,5}O_{19}$; x = 0 (d), 0,1 (e), 0,2 (e) – с дополнительной добавкой $SrFe_{9,5}Al_{2,5}O_{19}$)

Рис. 3. Электронно-микроскопические снимки поверхности сколов образцов изотропных постоянных магнитов, полученных из ферритов $(Ba_{0,5}Sr_{0,5})_{1-x}Sm_xFe_{12-x}Co_xO_{19}$ (×5000) (x = 0 (a), 0,1 (e), 0,2 (d) – без дополнительной добавки SrFe_{9.5}Al_{2.5}O₁₉; x = 0 (δ), 0,1 (e), 0,2 (e) – с дополнительной добавкой SrFe_{9.5}Al_{2.5}O₁₉)

Заключение. Полученные результаты проведенного исследования магнитных свойств изотропных постоянных магнитов из ферритов $Sr_{1-x}Ln_xFe_{12-x}M_xO_{19}$ ($Ln^{3+} - Sm^{3+}$, Gd^{3+} ; $M^{2+} - Co^{2+}$, Zn^{2+}), ($Ba_{0,5}Sr_{0,5})_{1-x}Sm_xFe_{12-x}Co_xO_{19}$ (x = 0; 0,1; 0,2; 0,3) показывают, что изотропные постоянные магниты из ферритов $Sr_{0,9}Sm_{0,1}Fe_{11,9}Co_{0,1}O_{19}$, ($Ba_{0,5}Sr_{0,5})_{0,9}Sm_{0,1}Fe_{11,9}Co_{0,1}O_{19}$ имеют более высокие значения остаточной магнитной индукции (B_r), коэрцитивной силы ($_BH_c$) и энергетического произведения (BH)_{тах}, чем изотропный постоянный магнит из феррита $SrFe_{12,5}O_{19}$. Использование добавки $SrFe_{9,5}Al_{2,5}O_{19}$ позволяет повысить коэрцитивную силу и энергетическое произведение (BH)_{тах} изотропных постоянных магнитов из твердых растворов ферритов $Sr_{0,9}Sm_{0,1}Fe_{11,9}Co_{0,1}O_{19}$, ($Ba_{0,5}Sr_{0,5}$)_{0,9} $Sm_{0,1}Fe_{11,9}Co_{0,1}O_{19}$.

Литература

- 1. Смит Я., Вейн Х. Ферриты. Физические свойства и практическое применение. М.: ИЛ, 1962.
- 2. Летюк Л. М. и др. Технология производства материалов магнитоэлектроники. М.: Металлургия, 1994.
- 3. Крупичка С. Физика ферритов и родственных им магнитных окислов. М.: Мир, 1976. Т. 2.
- 4. Taguchi H. et al. // J. Physique IV: JP. 1997. Vol. 7, N 1. P. c1-311- c1-312.
- 5. Obara J., Yamamoto H. // J. of the Japan Society of Powder and Powder Metallurgy. 2000. Vol. 47, N 7. P. 796-800.
- 6. Lechevallier L. et al. // J. of Alloys and Compounds. 2003. Vol. 359. P. 310–314.
- 7. Wang J. F., Ponton C. B., Harris I. R. // J. of Alloys and Compounds. 2005. Vol. 403. Iss. 1-2. P. 104-109.
- 8. Lechevallier L. et al. // J. of Magnetism and Magnetic Materials. 2007. Vol. 316. P. 109-111.
- 9. Takeyuki K. et al. // J. of Magnetism and Magnetic Materials. 2010. Vol. 322. P. 2381–2385.
- 10. Lechevllier L. et al. // J. of Phys: Condens. Matter. 2008. Vol. 20. P. 175203-175212.
- 11. Смоленчук С. В. и др. // Весці НАН Беларусі Сер. хім. навук. 2006. № 3. С. 10–15.
- 12. Полыко Д. Д., Башкиров Л. А., Сирота И. М. // Весці НАН Беларусі Сер. хім. навук. 2010. № 2. С. 5-8.
- 13. Полыко Д. Д. и др. // Свиридовские чтения. Минск: БГУ, 2009. С. 104–109.
- 14. Башкиров Л. А. и др. // Труды БГТУ. Химия и технология неорганических веществ. 2011. № 3. С. 43-50.
- 15. *Qiao L*. et al. // J. of Magnetism and Magnetic Materials. 2007. Vol. 318. P. 74–78.

ZE WU, L. A. BASHKIROV, S. V. SLONSKAYA, S. V. SHAUCHENKA, V. N. SHAMBALYOV

MAGNETIC PROPERTIES OF PERMANENT MAGNETS BASED ON M-TYPE STRONTIUM FERRITE WITH Sr²⁺ SUBSTITUTED BY Sm³⁺ AND Gd³⁺; AND Fe³⁺ SUBSTITUTED BY Zn²⁺ AND Co²⁺

Summary

 $Sr_{1-x}Ln_xFe_{12-x}M_xO_{19}$ ($Ln^{3+} - Sm^{3+}$, Gd^{3+} ; $M^{2+} - Co^{2+}$, Zn^{2+}) and ($Ba_{0,5}Sr_{0,5}$)_{1-x} $Sm_xFe_{12-x}Co_xO_{19}$ (x = 0; 0,1; 0,2; 0,3) ferrites have been prepared by solid-state method in air at 1473 K. It has been shown that isotropic permanent magnets based on $Sr_{0,9}Sm_{0,1}Fe_{11,9}Co_{0,1}O_{19}$, ($Ba_{0,5}Sr_{0,5}$)_{0,9} $Sm_{0,1}Fe_{11,9}Co_{0,1}O_{19}$ ferrites show higher values of magnetic induction (B_r), coercive force ($_BH_c$) and maximum energy product (BH)_{max} than ones based on $SrFe_{12}O_{19}$ ferrite. It has been found that using $SrFe_{9,5}Al_{2,5}O_{19}$ as an additive increases the coercive force ($_BH_c$) and maximum energy product (BH)_{max} for isotropic permanent magnets from the solid solutions of $Sr_{0,9}Sm_{0,1}Fe_{11,9}Co_{0,1}O_{19}$, ($Ba_{0,5}Sr_{0,5}$)_{0,9} $Sm_{0,1}Fe_{11,9}Co_{0,1}O_{19}$, ($Ba_{0,5}Sr_{0,5}$)_{0,9} $Sm_{0,1}Fe_{11,9}Co_{0,1}O_{19}$, ($Ba_{0,5}Sr_{0,5}$)_{0,9} $Sm_{0,1}Fe_{11,9}Co_{0,1}O_{19}$ ferrites.