НЕАРГАНІЧНАЯ ХІМІЯ

УДК 541.1 + 621.785.36 + 621.78.011

Е. К. ЮХНО, Л. А. БАШКИРОВ

ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА ТВЕРДЫХ РАСТВОРОВ НА ОСНОВЕ ИНДАТА ЛАНТАНА LaInO₃, ЛЕГИРОВАННОГО ИОНАМИ Pr³⁺, Cr³⁺, Mn³⁺

Белорусский государственный технологический университет, Минск, Беларусь, e-mail: bashkirov@belstu.by

Твердофазным методом получены образцы твердых растворов $La_{1-x}Pr_xInO_3$ (x = 0,001; 0,002; 0,003; 0,004), $La_{0,998}Pr_{0,002}In_{1-y}M_yO_3$ ($M - Cr^{3+}$, Mn^{3+} ; y = 0,002; 0,003), проведены их рентгенофазовый, ИК-спектроскопический, дилатометрический, термический анализы. Все полученные образцы были однофазными с кристаллической структурой орторомбически искаженного перовскита. Показано, что ИК-спектры поглощения всех твердых растворов отличаются незначительно от ИК-спектров LaInO₃. Установлено, что в интервале температур 400–1100 К исследованные твердые растворы на основе индата лантана являются термостабильными.

Ключевые слова: индат лантана, твердый раствор, рентгенофазовый анализ, ИК-спектроскопия, тепловое расширение, термический анализ.

E. K. YUKHNO, L. A. BASHKIROV

PHYSICAL AND CHEMICAL PROPERTIES OF SOLID SOLUTIONS BASED ON LANTHANUM INDATE DOPED BY Pr³⁺, Cr³⁺, Mn³⁺ IONS

Belarusian State Technological University, Minsk, Belarus, e-mail: bashkirov@belstu.by

 $La_{1,x}Pr_xInO_3$ (x = 0,001; 0,002; 0,003; 0,004), $La_{0,998}Pr_{0,002}In_{1,y}M_yO_3$ (M - Cr³⁺, Mn³⁺; y = 0,002; 0,003) solid solutions were obtained by solid-phase method and studied by XRD, IR-spectroscopic, dilatometric and thermal analysis methods. All samples were single-phased and had the structure of orthorhombically distorted perovskite. It has been found that the IR-spectra for all solid solutions differ slightly from those for LaInO₃. It has been shown that in the temperature range of 400–1100 K all solid solutions based on lanthanum indate are thermally stable.

Keywords: lanthanum indate, solid solution, X-ray diffraction, IR-spectroscopy, thermal expansion, thermal analysis.

Введение. Твердые растворы на основе LaInO₃, легированного ионами редкоземельных элементов, обладают хорошими фотолюминесцентными свойствами и могут быть использованы в светодиодах и FED-дисплеях (дисплеях с автоэлектронной эмиссией) [1–3]. Известно, что твердые растворы на основе LaInO₃, легированного ионами Pr^{3+} , излучают в красной и сине-зеленой областях спектра [1]. Введение в кристаллическую решетку ионов 3*d*-элементов (Cr³⁺, Mn³⁺) может усилить фотолюминесценцию, вызванную ионами редкоземельных элементов (сенсибилизация). Для получения высокоэффективных фотолюминофоров количество вводимых в кристаллическую решетку редкоземельных и 3*d*-элементов должно быть небольшим, чтобы не произошло концентрационного тушения люминесценции [4]. Однако ИК-спектры поглощения, тепловое расширение и термическая стабильность твердых растворов на основе индата лантана, обладающего фотолюминесцентными свойствами, исследованы недостаточно, хотя одним из важнейших требований к таким материалам является высокая термическая стабильность [5]. Люминофоры на основе индата лантана часто наносят на подложки со структурой перовскита или на активные элементы полупроводниковых светодиодов, излучающих в ультрафиолетовой области спектра. При этом для получения пленок ряда сегнетоэлектриков со структурой перовскита в качестве

[©] Юхно Е. К., Башкиров Л. А., 2015

подложки используется твердый раствор на основе LaGaO₃ [6]. В связи с этим необходимо, чтобы коэффициенты линейного теплового расширения для фотолюминофора на основе LaInO₃ и подложки были практически равными.

Цель настоящей работы – исследование кристаллической структуры, ИК-спектров поглощения, теплового расширения, термической стабильности твердых растворов на основе LaInO₃, легированного ионами редкоземельных (Pr^{3+}) и 3*d*-элементов (Cr^{3+} , Mn^{3+}) с концентрацией легирующих ионов не более 0,4 мол.%.

Методика эксперимента. Твердые растворы на основе индата лантана $La_{1-x}Pr_xInO_3$ (x = 0,001; 0,002; 0,003; 0,004), $La_{0,998}Pr_{0,002}In_{1-y}M_yO_3$ ($M - Cr^{3+}, Mn^{3+}; y = 0,002; 0,003$) получали твердофазным методом из оксидов лантана (La_2O_3), индия (In_2O_3), празеодима (Pr_6O_{11}), хрома (Cr_2O_3), марганца (Mn_2O_3). Все реактивы имели квалификацию «х. ч.». Оксид лантана был предварительно прокален в течение часа на воздухе при температуре 1273 К.

Порошки оксидов, взятых в заданных молярных соотношениях, смешивали и мололи в планетарной мельнице «Pulverizette 6» с добавлением этанола (материал стакана и мелющих шаров– ZrO₂). Полученную шихту (с добавлением этанола) прессовали под давлением 50–75 МПа в таблетки диаметром 25 мм и высотой 5–7 мм, которые сушили на воздухе при комнатной температуре, а затем обжигали при 1523 К на воздухе в течение 6 ч. Для того чтобы избежать возможного (при синтезе и спекании) взаимодействия таблеток с материалом подложки (Al₂O₃), образцы отделяли от подложки тонким буферным слоем шихты того же состава, что и сами таблетки. Охлаждение образцов от температур спекания до комнатной температуры протекало медленно, вместе с печью (скорость охлаждения составляла 2–5 К-мин⁻¹). После предварительного обжига таблетки дробили, перемалывали, прессовали с добавлением небольшого количества этанола в бруски длиной 30 мм и сечением 5×5 мм², которые обжигали при температуре 1523 К на воздухе в течение 6 ч на подложках из оксида алюминия.

Рентгеновские дифрактограммы получали на дифрактометре D8 ADVANCED фирмы Bruker с использованием CuK_{α}-излучения при комнатной температуре в диапазоне углов 2 Θ = 20–80°. Параметры кристаллической структуры (*a*, *b*, *c* и объем элементарной ячейки *V*) полученных твердых растворов на основе индата лантана LaInO₃ были рассчитаны при помощи рентгеноструктурного табличного процессора (RTP), с использованием значений межплоскостных расстояний и индексов Миллера для 12–15 рефлексов. Погрешность в определении параметров элементарных ячеек не превышала ±0,001 Å.

Инфракрасные (ИК) спектры синтезированных твердых растворов в интервале волновых чисел 250–900 см⁻¹ записывали в таблетированных с КВг смесях на ИК-Фурье спектрометре NEXUS фирмы Thermo Nicolet. Масса навески исследуемого твердого раствора на основе индата лантана составляла ≈ 1 мг – около 0,1 % от массы КВг. Погрешность определения частот колебаний не превышала ± 2 см⁻¹.

Термическое расширение керамических образцов твердых растворов на основе индата лантана исследовали в интервале температур 400–1100 К при помощи кварцевого дилатометра с вертикальным расположением кварцевого толкателя с индикатором микронным ИГМ (рычажнозубчатая многооборотная головка с ценой деления 0,001 мм в динамическом режиме со скоростью нагревания-охлаждения 3–5 К·мин⁻¹). Нагрев и охлаждение осуществляли на воздухе в печи электросопротивления. Образцы представляли собой прямоугольные параллелепипеды размером 5×5×30 мм. Погрешность определения относительного удлинения образцов не превышала 0,1 %. Значения среднего линейного коэффициента термического расширения (α) образцов рассчитывали при помощи метода наименьших квадратов. Погрешность в определении α составляла 1–5 % для различных образцов и температурных интервалов.

Кривые дифференциальной сканирующей калориметрии (ДСК), термогравиметрического и дифференциального термогравиметрического (ТГ, ДТГ) анализов снимали на дериватографе TGA/DSC1/1600 фирмы METTLER TOLEDO Instruments (Швейцария) в статической воздушной атмосфере в интервале температур 300–1265 К с использованием в качестве эталона Al_2O_3 при линейном режиме нагрева образцов со скоростью 10 град/мин, масса порошкообразной навески составляла 65 мг.

Результаты исследований и их обсуждение. Анализ рентгеновских дифрактограмм (рис. 1) показал, что все исследованные образцы на основе индата лантана, легированного ионами Pr³⁺, Cr³⁺, Mn³⁺, являются однофазными и имеют кристаллическую структуру орторомбически искаженного перовскита типа GdFeO₃ ($a < c\sqrt{2} < b$ [7]). Параметры кристаллической решетки полученных твердых растворов приведены в табл. 1. Ионы Pr³⁺ в твердом растворе на основе индата лантана замещают ионы La³⁺ в соответствующей подрешетке LaInO₃. Так как разница ионных радиусов La^{3+} и Pr^{3+} незначительная (ионный радиус La^{3+} на 0,04 Å больше ионного радиуса Pr^{3+} [8]), то, как установлено в работе [9], в двойной системе (1–x)LaInO₃-xPrInO₃ при замещении ионов La³⁺ ионами Pr³⁺ происходит образование непрерывного ряда твердых растворов La_{1-x}Pr_xInO₃, параметры a, b, c элементарной ячейки которых при увеличении степени замещения x постепенно уменьшаются. Однако, так как концентрация ионов Pr³⁺ в исследованных твердых растворах не превышает 0,4 мол.%, параметры кристаллической решетки всех исследованных твердых растворов отличаются незначительно от соответствующих параметров кристаллической решетки LaInO₃ [9]. Так, например, твердый раствор La_{0 997}Pr_{0 003}InO₃ имеет следующие параметры кристаллической решетки: *a* = 5,741 Å, *b* = 5,939 Å, *c* = 8,237 Å, *V* = 280,8 Å³, а исследованный в работе [9] индат лантана LaInO₃ – a = 5,718 Å, b = 5,932 Å, c = 8,214 Å, V = 278,6 Å³.

Таблица 1. Параметры *a*, *b*, *c* и объем элементарной ячейки *V*, степень орторомбического искажения є для твердых растворов на основе индата лантана LaInO₃, легированного ионами Pr³⁺, Cr³⁺, Mn³⁺

Состав	Параметры элементарной кристаллической ячейки					
	<i>a</i> , Å	<i>b</i> , Å	<i>c</i> , Å	V, Å ³	ε·10 ²	c/√2, Å
La _{0,999} Pr _{0,001} InO ₃	5,734	5,938	8,228	280,1	3,56	5,818
La _{0,998} Pr _{0,002} InO ₃	5,740	5,939	8,242	280,9	3,46	5,828
La _{0,997} Pr _{0,003} InO ₃	5,741	5,939	8,237	280,8	3,45	5,824
La _{0,996} Pr _{0,004} InO ₃	5,739	5,942	8,234	280,8	3,54	5,822
La _{0,998} Pr _{0,002} In _{0,998} Cr _{0,002} O ₃	5,737	5,942	8,233	280,6	3,57	5,822
La _{0,998} Pr _{0,002} In _{0,997} Cr _{0,003} O ₃	5,739	5,940	8,236	280,8	3,50	5,824
La _{0,998} Pr _{0,002} In _{0,998} Mn _{0,002} O ₃	5,744	5,941	8,237	281,1	3,42	5,824
La _{0,998} Pr _{0,002} In _{0,997} Mn _{0,003} O ₃	5,742	5,940	8,243	281,2	3,45	5,829
LaInO ₃ [9]	5,718	5,932	8,214	278,6	3,74	5,808
PrInO ₃ [9]	5,653	5,905	8,150	272,1	4,46	5,763

Рис. 1. Рентгеновские дифрактограммы твердых растворов $La_{1-x}Pr_xInO_3$ (x = 0,001 (1); 0,002 (2); 0,003 (3); 0,004 (4)), $La_{0.998}Pr_{0.002}In_{1-v}Cr_vO_3$ (y = 0,002 (5); 0,003 (6)), $La_{0.998}Pr_{0.002}In_{1-v}Mn_vO_3$ (y = 0,002 (7); 0,003 (8))

Рис. 2. ИК-спектры поглощения твердых растворов $La_{1-x}Pr_xInO_3$ (x = 0,001 (I); 0,002 (2); 0,003 (3); 0,004 (4)), $La_{0.998}Pr_{0.002}In_{1-y}Cr_yO_3$ (y = 0,002 (5); 0,003 (6)), $La_{0.998}Pr_{0.002}In_{1-y}Mn_yO_3$ (y = 0,002 (7); 0,003 (8))

При замещении ионов In³⁺ в La_{0 998}Pr_{0 002}InO₃ ионами Cr³⁺ и Mn³⁺, концентрация которых составляет всего 0,2-0,3 мол.%, несмотря на сравнительно большую разницу ионных радиусов In³⁺, Cr³⁺, Mn³⁺ (разница ионных радиусов In^{3+} и Cr^{3+} составляет 0,28 Å, In^{3+} и Mn³⁺ – 0,22 Å [8]), параметры кристаллической решетки образующихся твердых растворов также отличаются незначительно от соответствующих параметров LaInO₃. Значения степени орторомбического искажения структуры перовскита є (є = (b-a)/a) для полученных твердых растворов на основе индата лантана, легированного ионами Pr³⁺, Cr³⁺, Mn³⁺, также изменяются незначительно и их величины равны (3,45-3,56)·10⁻² (табл. 1). Положительный знак степени орторомбического искажения остается постоянным, что согласуется с данными для системы твердых растворов $La_{1-x}Pr_xInO_3$ ($0 \le x \le 1$), изученной в работе [9].

ИК-спектры поглощения исследуемых твердых растворов (рис. 2) отличаются между собой незначительно, на них присутствуют полосы поглощения, обу-

словленные валентными колебаниями связей In(Cr, Mn)–O (547–549 см⁻¹, 490–493 см⁻¹) и La(Pr)–O (390–398 см⁻¹, 347–354 см⁻¹). Частоты полос поглощения всех полученных твердых растворов на основе индата лантана хорошо согласуются с данными, полученными для LaInO₃ [10].

При увеличении содержания в твердом растворе $La_{1-x}Pr_xInO_3$ ионов Pr^{3+} от x = 0,001 до 0,004 (рис. 2) частоты валентных колебаний связей In–O и La(Pr)–O изменяются в пределах погрешности метода измерения (± 2 см⁻¹). Замещение 0,2; 0,3 мол.% ионов индия In³⁺ в твердом растворе $La_{0,998}Pr_{0,002}InO_3$ ионами Cr^{3+} или Mn^{3+} практически не оказывает влияния на значения минимумов полос поглощения валентных колебаний связей In(Cr, Mn)–O и связей La(Pr)–O в интервале частот 351–354 см⁻¹, однако приводит к незначительному смещению минимумов полос поглощения валентных колебаний связей La(Pr)–O в низкочастотную область (от 396 см⁻¹ для $La_{0,998}Pr_{0,002}InO_3$ до 390 см⁻¹ для твердых растворов $La_{0,998}Pr_{0,002}In_{0,997}Cr_{0,003}O_3$ и $La_{0,998}Pr_{0,002}In_{0,998}Mn_{0,002}O_3$).

Приведенные на рис. 3 температурные зависимости относительного удлинения $\Delta l/l_0$ исследованных керамических образцов на основе индата лантана, легированного ионами Pr^{3+} , Cr^{3+} , практически линейные. Следовательно, в интервале температур 400–1100 К отсутствуют фазовые переходы. Рассчитанные методом наименьших квадратов по температурным зависимостям относительного удлинения коэффициенты линейного теплового расширения (α) приведены в табл. 2. Их анализ показывает, что увеличение степени замещения *x* ионов La³⁺ ионами Pr³⁺ в твердом растворе La_{1-x}Pr_xInO₃ от *x* = 0,001 до 0,004 приводит к уменьшению величины коэффициента линейного теплового расширения α от 7,54·10⁻⁶ до 6,74·10⁻⁶ K⁻¹, а замещение в твердом растворе La_{0,998}Pr_{0,002}InO₃ 0,3 мол.% ионов In³⁺ ионами Cr³⁺ практически не приводит к изменению величины коэффициента линейного теплового расширения α . Полученные коэффициенты линейного теплового расширения согласуются с величиной 8,89·10⁻⁶ K⁻¹ для твердого раствора La_{0.8}Pr_{0.2}InO₃, изученного в работе [9].

На кривых ДСК (рис. 4) для исследованных твердых растворов $La_{0,998}Pr_{0,002}InO_3$, $La_{0,998}Pr_{0,002}In_{0,997}Cr_{0,003}O_3$, $La_{0,998}Pr_{0,002}In_{0,997}Cr_{0,003}O_3$, $La_{0,998}Pr_{0,002}In_{0,997}Mn_{0,003}O_3$ никаких тепловых эффектов не наблюдается, что подтверждает сделанный на основании линейного характера температурных зависимостей относительного удлинения $\Delta l/l_0$ образцов вывод об отсутствии в исследованных образцах при температурах 400–1100 К каких-либо фазовых переходов. Однако на кривых ТГ наблюдаются незначительные потери массы с отклонением от линейной зависимости, указывающие на увеличение скорости потери массы, максимумы величин которых (минимумы на кривых ДТГ) достигаются при определенной температуре T_1 , расположенной в области температур 577–603 К. Общая потеря массы в интервале температур 300–1265 К для всех исследованных образцов

Таблица 2. Коэффициент линейного теплового расширения (α), общая потеря массы в интервале температур 300–1265 К ($\Delta m_{oбщ}$) и потеря массы (Δm_{J}) при температуре T_{J} соответственно для твердых растворов на основе индата лантана LaInO₃, легированного ионами Pr³⁺, Cr³⁺, Mn³⁺

Состав	α·10 ⁶ , K ⁻¹	Δ <i>m</i> _{общ} , мас.%	Δm_1 , мас.%	<i>T</i> ₁ , К
La _{0,999} Pr _{0,001} InO ₃	7,54	—	—	_
La _{0,998} Pr _{0,002} InO ₃	8,17	0,230	0,099	603
La _{0,997} Pr _{0,003} InO ₃	7,67	—	—	_
La _{0,996} Pr _{0,004} InO ₃	6,74	—	—	_
La _{0,998} Pr _{0,002} In _{0,997} Cr _{0,003} O ₃	8,01	0,089	0,091	568
$La_{0.998}Pr_{0.002}In_{0.997}Mn_{0.003}O_3$	_	0,082	0,079	577

Рис. 3. Температурные зависимости относительного удлинения $\Delta l/l_0$ твердых растворов La_{1-x}Pr_xInO₃ с x = 0,002 (1); 0,003 (2); 0,004 (3) (a); La_{0,999}Pr_{0,001}InO₃ (1), La_{0,998}Pr_{0,002}In_{0,997}Cr_{0,003}O₃ (2) (δ)

Рис. 4. Кривые ДСК (1), ТГ (2), ДТГ (3) для твердых растворов La_{0,998}Pr_{0,002}InO₃ (*a*); La_{0,998}Pr_{0,002}In_{0,997}Cr_{0,003}O₃ (*b*); La_{0,998}Pr_{0,002}In_{0,997}Mn_{0,003}O₃ (*b*)

составляет не более 0,230 мас.%. При этом для исследованных твердых растворов на основе индата лантана, легированного ионами Pr^{3+} , Cr^{3+} , Mn^{3+} , в интервале температур 300–503 К наблюдается небольшое увеличение массы. Вероятно, природа этого незначительного увеличения массы твердых растворов $La_{0,998}Pr_{0,002}InO_3$, $La_{0,998}Pr_{0,002}In_{0,997}Cr_{0,003}O_3$, $La_{0,998}Pr_{0,002}In_{0,997}Mn_{0,003}O_3$ одинакова, но в настоящей работе не установлена. В табл. 2 приведены температуры T_1 и потери массы (Δm_1), определенные по кривым ДТГ и ТГ соответственно для твердых растворов на основе индата лантана. Полученные данные хорошо согласуются с данными термогравиметрического анализа твердых растворов $La_{1-x}Pr_xInO_3$, приведенными в работе [9]. Заключение. В работе твердофазным методом из соответствующих оксидов получены твердые растворы на основе индата лантана LaInO₃, легированного ионами Pr³⁺, Cr³⁺, Mn³⁺, с содержанием легирующих ионов не более 0,4 мол.% и изучены кристаллическая структура, ИК-спектры поглощения, тепловое расширение, проведен комплексный термический анализ.

Установлено, что образцы индатов являются однофазными и имеют кристаллическую структуру орторомбически искаженного перовскита типа GdFeO₃ ($a < c / \sqrt{2} < b$). Параметры элементарной ячейки кристаллической решетки полученных твердых растворов на основе индата лантана LaInO₃ изменяются незначительно. Установлено, что на ИК-спектрах минимумы полос поглощения валентных колебаний связей In(Cr, Mn)–O и La(Pr)–O для разных составов отличаются незначительно. Показано, что исследованные твердые растворы на основе индата лантана, легированного ионами Pr³⁺, Cr³⁺, Mn³⁺, в интервале температур 400–1100 К являются термостабильными, что свидетельствует о перспективности их использования в качестве фотолюминофоров для изготовления светодиодов белого света.

Список использованной литературы

1. *Liu*, *X*. Synthesis and luminescent properties of $LaInO_3$: RE^{3+} (RE = Sm, Pr and Tb) nanocrystalline phosphors for field emission displays / X. Liu, J. Lin // Solid State Sci. – 2009. – Vol. 11. – P. 2030–2036.

2. Okamoto, S. Luminescent properties of praseodymium-doped alkaline-earth titanates / S. Okamoto, H. Yamamoto // J. Lumin. - 2003. - Vol. 102-103. - P. 586-589.

3. *Psuja, P.* Rare-earth doped nanocrystalline phosphors for field emission displays / P. Psuja, D. Hreniak, W. Strek // J. Nanomater. – 2007. – Vol. 2007. – DOI: 10.1155/2007/87350.

4. Ландсберг, Г. С. Оптика / Г. С. Ландсберг // М.: Наука, 1976. – 926 с.

5. New opportunities for lanthanide luminescence /J.-C. G. Bünzli [et al.] // J. Rare Earths. - 2007. - Vol. 25, Iss. 5. - P. 257-274.

6. *Морозов, А. Н.* Реальная структура монокристаллов LaGaO₃, выращенных методом Чохральского / А. Н. Морозов, О. Ю. Морозова, Н. М. Пономарев // Кристаллография. – 1993. – Т. 38, вып. 3. – С. 149–173.

7. *Крупичка, С.* Физика ферритов и родственных им магнитных окислов : в 2-х т. / С. Крупичка. – М.: Мир, 1976. – Т. 1. – 353 с.

8. *Шаскольская, М. П.* Кристаллография: учеб. пособие для ВТУЗов /М. П. Шаскольская. – М.: Высшая школа, 1976. – 391 с.

9. *Кандидатова, И. Н.* Термический анализ, тепловое расширение индатов празеодима-лантана Pr_{1-x}La_xInO₃ / И. Н. Кандидатова, Л. А. Башкиров, Г. С. Петров // Труды БГТУ. Химия и технология неорган. в-в. – 2012. – № 3. – С. 29–31.

10. Кандидатова, И. Н. Физико-химические свойства твердых растворов на основе галлатов, индатов редкоземельных элементов со структурой перовскита: дис. ... канд. хим. наук / И. Н. Кандидатова. – Минск, 2014. – 137 с.

Поступила в редакцию 12.05.2015