## ПРОБЛЕМЫ ПРОИЗВОДСТВА ТВЕРДОГО ПАРАФИНА ИЗ НЕФТЯНОГО СЫРЬЯ МЕТОДОМ СТАТИЧЕСКОЙ КРИСТАЛЛИЗАЦИИ

Карпенко О.В., Грушова Е.И.,

Белорусский государственный технологический университет, г. Минск

Твердые парафины находят применение в различных областях промышленности и народного хозяйства, в том числе химической, радиоэлектронной, машиностроительной, пищевой, тароупаковочной. Широкое применение твердых парафинов обусловлено присущими им физикохимическими и структурно-механическими свойствами, которые зависят от соотношения углеводородов различных групп, входящих в их состав: широкий диапазон температур плавления, небольшая пластичность, большая объемная усадка, гидрофобность, диэлектрические и оптические свойства.

Все реализуемые в настоящее время промышленные методы получения твердых парафинов из гача, полученного при депарафинизации рафинатов селективной очистки масляных фракций и содержащего значительное количество масла, можно разделить на два вида:

- обезмасливание с применением избирательных растворителей;
- обезмасливание способом потения.

Наиболее универсальными являются методы кристаллизации с применением избирательных растворителей, так как они могут применяться практически для любого сырья — начиная от дистиллятов дизельного топлива и кончая тяжелыми остаточными продуктами. Однако, данный способ характеризуется высокими энергетическими затратами на охлаждение сырьевой смеси и регенерацию растворителей, большим расходом растворителей на разбавление сырья, низкой скоростью фильтрации сырья и малым выходом целевой продукции [1, 2].

В связи с возрастающими требованиями к промышленности снижать использование органических растворителей и повышать качество продуктов, для выделения твердых парафинов актуальными становятся технологии кристаллизации без использования растворителей.

В Республике Беларусь единственным производителем твердого парафина является ОАО «Завод горного воска», где для обезмасливания гача методом статической кристаллизации используется установка, разработанная фирмой «Sulzer Chemtech» (Швейцария).

Данный метод обладает следующими преимуществами:

- отсутствие применения в технологии полярных растворителей;
- отсутствие дорогостоящих узлов фильтрации и центрифугирования продукта;
- экологическая безопасность процесса, позволяющая размещать производство в условиях малых санитарных зон предприятия;

- небольшая площадь, занимаемая оборудованием, позволяющая разместить производство в здании.

В соответствии с технологическим регламентом, процесс кристаллизации состоит из трех последовательно повторяющихся стадий: получение отека (стадия 1); переработка сырья (стадия 2); получение продукта (стадия 3). Каждая стадия состоит из фаз кристаллизации, частичного плавления и полного плавления, в течение которых температура теплоносителя изменяется по заданному графику. Получаемые фракции в зависимости от содержания в них масла сливаются в строго определенные емкости (остатка, промежуточного питания стадий или продукта) согласно материальному балансу.

Однако этот наиболее передовой и экологичный способ получения твердого парафина на данный момент не позволяет перерабатывать так называемые тяжелые гачи, имеющие высокую вязкость и содержащие более 20% углеводородов  $C_{35}$  и выше нормального и изостроения. Процесс обезмасливания таких гачей получается затянут во времени и экономически нецелесообразен.

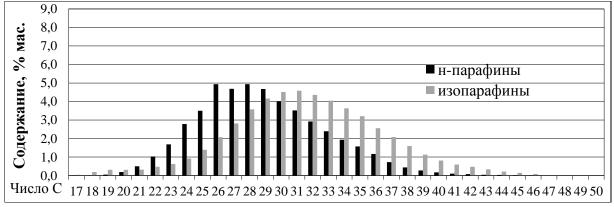

Опыты по обезмасливанию нефтяного сырья — гачей марки 2 производства ОАО «Нафтан» г.Новополоцк, Республика Беларусь — проводились на лабораторной установке. В таблице 1 приведены основные физикохимические характеристики гачей.

Таблица 1 Физико-химические показатели образцов гачей производства ОАО «Нафтан» согласно ТУ РБ 300220696.009-2002

| Наименование показателя       | Требования по   | Фактическое значение |                 |
|-------------------------------|-----------------|----------------------|-----------------|
|                               | ТНПА            | Гач, образец №1      | Тяжелый гач,    |
|                               |                 |                      | образец №2      |
| Внешний вид                   | кристаллическая | кристаллическая      | кристаллическая |
|                               | масса от белого | масса светло-        | масса темно се- |
|                               | до светло-      | коричневого          | рого цвета      |
|                               | коричневого или | цвета                |                 |
|                               | темно серого    |                      |                 |
|                               | цвета           |                      |                 |
| Массовая доля масла, %        | 5,1-10,0        | 7,95                 | 8,02            |
| Температура плавления, °С     | не ниже 49      | 54                   | 59              |
| Массовая доля серы, %         | не более 0,5    | 0,04                 | 0,19            |
| Температура вспышки, опре-    | не ниже 180     | 212                  | 236             |
| деляемая в закрытом тигле, °С |                 |                      |                 |
| Массовая доля воды, %         | следы           | следы                | следы           |
| Массовая доля механических    | не более 0,1    | 0,1                  | 0,1             |
| примесей, %                   |                 |                      |                 |
| Вязкость кинематическая при   | не нормируется  | 4,46                 | 5,45            |
| 100°С, мм <sup>2</sup> /с     |                 |                      |                 |

Как видно из хроматограмм на рисунке 1, распределение нормальных и изопарафинов в данных образцах варьируется в достаточно широких

пределах. Соотношение нормальных и изопарафинов для образца №1 составляет 48% и 52% соответственно, из низ углеводороды  $C_{35}$  и выше составляют 18%. Для образца №2 соотношение нормальных и изопарафинов составляет 41% и 59% соответственно, из низ углеводороды  $C_{35}$  и выше составляют 32%.



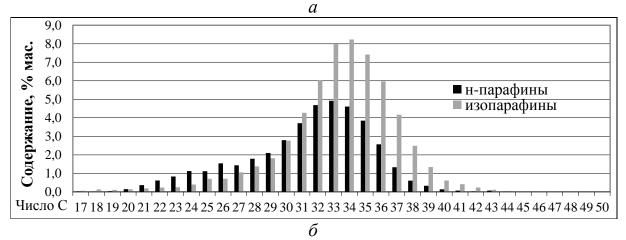
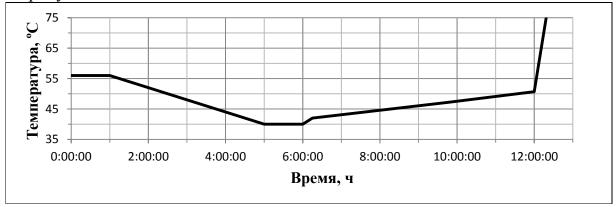




Рисунок 1 — Хроматограммы гача марки 2 образец №1 (a), тяжелого гача марки 2 образец №2 ( $\delta$ ), получаемых на ОАО «Нафтан», РБ

Для достижения одинакового содержания масла в расплавах обоих образцов стадию переработки сырья вели по зависимостям, приведенным на рисунке 2.



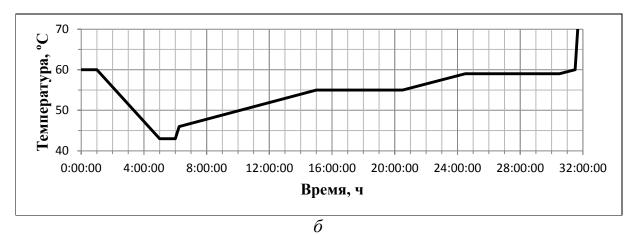



Рисунок 2 — Зависимость «температура-время» стадии переработки гача марки 2 образец №1 (a), тяжелого гача марки 2 образец №2 (б), получаемых на ОАО «Нафтан», РБ

В данной работе было исследовано влияние депрессорной присадки в количестве 1% на статическую кристаллизацию тяжелого гача. Однако, при сохранении одинакового температурного режима и выходов отека и расплава с образцом тяжелого гача без добавки, время проведения процесса существенно не изменилось, а качество расплава несколько ухудшилось. Физико-химические показатели расплавов анализируемых образцов приведены в таблице 2.

Таблица 2 Физико-химические показатели расплавов образцов гачей

| Наименование показателя        | Расплав         |                 |                      |
|--------------------------------|-----------------|-----------------|----------------------|
|                                | Гач, образец №1 | Тяжелый гач,    | Тяжелый гач +        |
|                                |                 | образец №2      | 1% депрес. при-      |
|                                |                 |                 | садки, образец<br>№3 |
| Внешний вид                    | кристаллическая | кристаллическая | кристаллическая      |
|                                | масса светло-   | масса светло-   | масса светло-        |
|                                | коричневого     | коричневого     | коричневого          |
|                                | цвета           | цвета           | цвета                |
| Массовая доля масла, %         | 6,08            | 6,69            | 7,00                 |
| Температура плавления, °С      | 57              | 62              | 61,5                 |
| Вязкость кинематическая при    | 4,49            | 5,45            | 6,05                 |
| 100°С, мм <sup>2</sup> /с      |                 |                 |                      |
| Выход, %                       | 67              | 42              | 42                   |
| Хроматографический анализ,     |                 |                 |                      |
| содержание, %:                 |                 |                 |                      |
| н-парафины                     |                 |                 |                      |
| изопарафины                    | 60              | 55              | 53                   |
| углеводороды С <sub>35</sub> и | 40              | 45              | 47                   |
| выше                           | 17              | 33              | 33                   |

В связи с ограниченностью и непостоянством состава сырьевых компонентов и стоит вопрос в отработке оптимальных режимов ведения технологического процесса для рационального использования сырья и увеличения селективности выделения парафинов. Поэтому на данный момент весьма актуальной проблемой является интенсификация процесса получения твердого парафина методом статической кристаллизации из тяжелого углеводородного сырья. Использование депрессорных присадок в качестве добавки к исходному сырью пока не дало положительных результатов.

## Список литературы

- 1. Переверзев А.Н., Богданов Н.Ф., Рощин Ю.Н. Производство парафинов. М.: Химия, 1973. 224 с.
- 2. Казакова Л.П. Твердые углеводороды нефти. М.: Химия, 1986. 176 с.