УДК 54-31:536.21:537.31/.32:666.654:621.36

Е. А. Чижова, кандидат химических наук, старший преподаватель (БГТУ); А. И. Клындюк, кандидат химических наук, доцент (БГТУ)

ТЕРМОЭЛЕКТРИЧЕСКИЕ СВОЙСТВА КЕРАМИКИ НА ОСНОВЕ ПЛЮМБАТОВ БАРИЯ – СТРОНЦИЯ

Твердофазным методом получена керамика состава $Ba_{1-x}Sr_xPb_{1+y}O_{3+2y}$ (x = 0,6; 0,8; y = 0,00; 0,10; 0,20), изучены ее фазовый состав, кристаллическая структура, электропроводность, теплопроводность и термо-ЭДС. Определены электронный и решеточный вклады в теплопроводность керамики, рассчитаны значения ее фактора мощности (P) и показателя термоэлектрической добротности (ZT). Установлено, что наилучшими термоэлектрическими характеристиками при высоких температурах обладает керамика состава $Ba_{0,2}Sr_{0,8}Pb_{1,1}O_{3,2}$ ($P_{1000} = 1,36$ мBT/(м · K²), а вблизи комнатной температуры – образец $Ba_{0,2}Sr_{0,8}Pb_{1,2}O_{3,4}$ ($ZT_{423} = 0,033$). На основе керамики $Ba_{0,2}Sr_{0,8}Pb_{1,1}O_{3,2}$ (проводник *n*-типа) и $Na_{0,55}Co_{0,9}Ni_{0,1}O_2$ (проводник *p*-типа) изготовлен опытный образец термоэлектрического модуля и определены его рабочие характеристики (выходное напряжение и мощность) при различных температурах.

The ceramics with $Ba_{1-x}Sr_xPb_{1+y}O_{3+2y}$ (x = 0,6; 0,8; y = 0,00; 0,10; 0,20) composition was prepared using solid-state reactions method and its phase composition, crystal structure, electrical conductivity, thermal conductivity and thermo-EMF was studied. The electronic and lattice parts of the thermal conductivity of ceramics were determined and its power factor (P) and figure-of-merit values (ZT) were calculated. It was found, that the best thermoelectric characteristics at high temperatures had the ceramics with composition $Ba_{0,2}Sr_{0,8}Pb_{1,1}O_{3,2}$ ($P_{1000} = 1,36$ mW/(m · K²), but near the room temperature – the $Ba_{0,2}Sr_{0,8}Pb_{1,2}O_{3,4}$ sample ($ZT_{423} = 0,033$). On the basis of $Ba_{0,2}Sr_{0,8}Pb_{1,1}O_{3,2}$ (*n*-type conductor) and $Na_{0,55}Co_{0,9}Ni_{0,1}O_2$ (*p*-type conductor) ceramics the prototype of the thermoelectric module was produced and its working characteristics (open-circuit voltage and power) at different temperatures were determined.

Введение. Выделяющаяся в окружающую среду при работе промышленных предприятий и автотранспорта теплота может быть непосредственно преобразована в электрическую энергию в устройствах, называемых термоэлектрическими генераторами (ТЭГ). Перспективными материалами для разработки высокотемпературных ТЭГ являются оксиды, которые термически и химически (на воздухе) более устойчивы, чем традиционные термоэлектрики на основе халькогенидов свинца, висмута или сурьмы. Потенциальной основой для разработки р-ветвей таких ТЭГ являются слоистые кобальтиты натрия (Na_xCoO₂) или кальция (Ca₃Co₄O_{9+ δ}), а *n*-ветвей – перовскитные метаплюмбаты бария – стронция (Ba_{1-x}Sr_xPbO₃) [1], в связи с чем разработка термоэлектрических материалов на основе этих оксидов и исследование их физико-химических и функциональных свойств представляет значительный научный и практический интерес.

Авторами [2] было установлено, что наилучшие термоэлектрические показатели (фактор мощности *P* и показатель термоэлектрической добротности *ZT*) в системе $Ba_{1-x}Sr_xPbO_3$ демонстрируют твердые растворы $Ba_{0,4}Sr_{0,6}PbO_3$ и $Ba_{0,2}Sr_{0,8}PbO_3$ ($P_{max} \approx 0,40$ мВт · м⁻¹ · K⁻² при T = 700-900 K, $ZT_{max} \approx 0,13$ при T = 673 K), а также SrPbO₃ ($P_{max} \approx 0,38$ мВт · м⁻¹ · K⁻² при T == 1000-1050 K). Согласно [3, 4], введение избытка оксида свинца в керамику на основе $Ba_{1-x}Sr_xPbO_3$ улучшает ее спекаемость, а также приводит к значительному росту ее фактора мощности (для составов $Ba_{0,4}Sr_{0,6}Pb_{1,1}O_{3,2}$ и $Ba_{0,2}Sr_{0,8}Pb_{1,1}O_{3,2}$ при $T = 700-750 \text{ K } P_{\text{max}} \approx 0,72-0,77 \text{ мВт} \cdot \text{м}^{-1} \cdot \text{K}^{-2}$ [3]) за счет создания в ней фазовой неоднородности, что позволяет рассматривать данный подход как эффективный способ повышения термоэлектрических показателей оксидной керамики.

В данной работе изучено влияние избытка оксида свинца (PbO) на фазовый состав, кристаллическую структуру, тепловое расширение, тепло- и электропроводность, термо-ЭДС и термоэлектрические характеристики керамики на основе плюмбатов бария – стронция (Ba,Sr)PbO₃. На базе керамики Ba_{0,2}Sr_{0,8}Pb_{1,1}O_{3,2} (проводник *n*-типа) и Na_{0,55}Co_{0,9}Ni_{0,1}O₂ (проводник *p*-типа) изготовлен опытный образец термоэлектрического модуля и изучены его рабочие характеристики (выходное напряжение и мощность) при различных температурах.

Методика эксперимента. Для получения керамики Ba_{0.4}Sr_{0.6}Pb_{1+v}O_{3+2v} и Ba_{0.2}Sr_{0.8}Pb_{1+v}O_{3+2v} (у = 0,00; 0,10; 0,20) использовали шихту из BaCO₃ (ч.), SrCO₃ (ч.) и PbO (ч.д.а.), которую смешивали при помощи мельницы Pulverizette 6.0 фирмы Fritsch (Германия) (материал тиглей и мелющих шаров – ZrO₂), после чего прессовали в диски диаметром 25 мм и толщиной 3-5 мм под давлением 0,26 МПа и отжигали на воздухе при 1073 К в течение 12 ч. Отожженные на воздухе образцы измельчали в агатовой ступке, после чего повторно перемалывали (с добавлением этилового спирта) на мельнице Pulverizette 6.0 и прессовали в бруски размером 5×5×30 мм и диски диаметром 9 и 15 мм и толщиной 2-3 мм, которые затем спекали на воздухе на протяжении 26 ч при температуре 1123 К. Спеченные образцы шлифовали и обтачивали до придания им правильной геометрической формы.

Идентификацию образцов и определение параметров их кристаллической структуры проводили при помощи рентгенофазового анализа (РФА) (рентгеновский дифрактометр D8 Advance Bruker AXS (Германия), СиК_{α}-излучение) и ИК-спектроскопии поглощения (Фурье-спектрометр Nexus фирмы ThermoNicolet).

Кажущуюся плотность образцов ($\rho_{\text{эксп}}$) определяли по их массе и геометрическим размерам. Тепловое расширение, удельную электропроводность (σ) и термо-ЭДС (*S*) керамики изучали на воздухе в интервале температур 300–1100 К по методикам, описанным в [4, 5]. Значения коэффициентов линейного теплового расширения (КЛТР) образцов находили из линейных участков зависимостей $\Delta l / l_0 = f(T)$. Теплопроводность спеченной керамики (λ) исследовали на воздухе в интервале температур 298–423 К при помощи измерителя теплопроводности ИТ- λ -400. Решеточный ($\lambda_{\text{реш}}$) и электронный ($\lambda_{3\pi}$) вклады в теплопроводность вычисляли при помощи соотношений $\lambda = \lambda_{3\pi} + \lambda_{\text{реш}}, \lambda_{3\pi} = \sigma LT$, где L – число Лоренца ($L = 2,45 \cdot 10^{-8}$ Вт · Ом · K⁻²).

Значения фактора мощности и показателя термоэлектрической добротности образцов рассчитывали по формулам $P = S^2 \sigma$, $ZT = (PT) / \lambda$. Мощность термоэлектрического модуля (*W*) определяли из уравнения $W = U_0^2 / R$, где U_0 – выходное напряжение модуля, а R – его сопротивление.

Результаты и их обсуждение. Согласно результатам РФА и ИК-спектроскопии поглощения, образцы с $y \ge 0,1$ содержали примесь – РbO, количество которой увеличивалось с ростом y; основная фаза керамики – метаплюмбат бария – стронция – имела орторомбически искаженную структуру перовскита с параметрами решетки a = 0,5913-0,5957 нм, b = 0,5945-0,5954 нм, c = 0,8375-0,8418 нм (табл. 1), которые практически не изменялись при увеличении соотношения (Ba,Sr) : Рb и уменьшались при увеличении степени замещения бария стронцием (рис. 1). Найденные нами значения параметров кристаллической структуры твердых растворов плюмбатов бария – стронция хорошо согласуются с результатами работ [2, 5].

Рис. 1. Рентгеновские дифрактограммы порошков состава $Ba_{0,4}Sr_{0,6}PbO_3$ (*1*), $Ba_{0,4}Sr_{0,6}Pb_{1,1}O_{3,2}$ (*2*), $Ba_{0,4}Sr_{0,6}Pb_{1,2}O_{3,4}$ (*3*), $Ba_{0,2}Sr_{0,8}PbO_3$ (*4*), $Ba_{0,2}Sr_{0,8}Pb_{1,1}O_{3,2}$ (*5*), $Ba_{0,2}Sr_{0,8}Pb_{1,1}O_{3,2}$ (*6*), * – фаза PbO

ИК-спектры поглощения порошков Ва_{0,4}Sr_{0,6}Pb_{1+y}O_{3+2y} содержали одну полосу поглощения с экстремумом при 584–588 см⁻¹, а спектры порошков Ва_{0,2}Sr_{0,8}Pb_{1+y}O_{3+2y} – три полосы с экстремумами при 337–343 см⁻¹, 395–397 см⁻¹ и 570–574 см⁻¹, причем положения полос поглощения практически не изменялись с ростом *y*.

Таблица 1

Параметры элементарной ячейки (a, b, c), объем элементарной ячейки (V),					
соотношение с / а для основной фазы, а также кажущаяся плотность (р _{эксп})					
керамики (Ba,Sr)Pb _{1+y} O _{3+2y}					

Состав	а, нм	<i>b</i> , нм	С, НМ	<i>V</i> , нм ³	c / a	$\rho_{ m эксп},$ г/см ³
$Ba_{0,4}Sr_{0,6}PbO_3$	0,5956	0,5954	0,8417	0,2984	1,4133	5,11
$Ba_{0,4}Sr_{0,6}Pb_{1,1}O_{3,2}$	0,5957	0,5952	0,8418	0,2985	1,4130	5,28
$Ba_{0,4}Sr_{0,6}Pb_{1,2}O_{3,4}$	0,5953	0,5952	0,8417	0,2982	1,4141	5,57
$Ba_{0,2}Sr_{0,8}PbO_3$	0,5913	0,5945	0,8375	0,2943	1,4164	4,92
$Ba_{0,2}Sr_{0,8}Pb_{1,1}O_{3,2}$	0,5913	0,5945	0,8375	0,2943	1,4164	4,95
$Ba_{0,2}Sr_{0,8}Pb_{1,2}O_{3,4}$	0,5919	0,5945	0,8379	0,2948	1,4156	4,51

Состав	$\alpha \cdot 10^6, \mathrm{K}^{-1}$				
	$T < T^*$	$T > T^*$	Т*, К		
Ba _{0,4} Sr _{0,6} PbO ₃	$13,0 \pm 0,7$	$20,6 \pm 1,0$	770		
$Ba_{0,4}Sr_{0,6}Pb_{1,1}O_{3,2}$	$13,0 \pm 0,7$	$19,7 \pm 1,0$	745		
$Ba_{0,4}Sr_{0,6}Pb_{1,2}O_{3,4}$	$12,5 \pm 0,6$	$19,9 \pm 1,0$	730		
Ba _{0,2} Sr _{0,8} PbO ₃	$11,3 \pm 0,6$	$18,1 \pm 0,9$	750		
$Ba_0 Sr_0 Pb_{1,1}O_{2,2}$	11.9 ± 0.6	17.6 ± 0.9	770		

Величины КЛТР (α) керамики (Ba,Sr)Pb_{1+ν}O_{3+2ν} при различных температурах

Усложнение вида спектров при увеличении степени замещения бария стронцием обусловлено увеличением степени тетрагонального искажения кристаллической структуры образцов (ростом соотношения c / a (табл. 1)). Таким образом, результаты РФА и ИК-спектроскопии полученной керамики находятся в хорошем согласии друг с другом.

Кажущаяся плотность спеченной керамики состава (Ba,Sr)Pb_{1+y}O_{3+2y} изменялась в пределах 4,51-5,57 г/см³ (табл. 1) и, в целом, возрастала с увеличением y. Таким образом, полученные нами результаты согласуются с выводами работ [3, 4], в соответствии с которыми введение в керамику на основе плюмбатов бария – стронция оксида свинца (PbO) улучшает ее спекаемость.

На температурных зависимостях относительного удлинения спеченной керамики наблюдали излом при $T^* = 730-770$ К, сопровождающийся возрастанием КЛТР образцов в 1,5–1,6 раза (табл. 2), что, согласно [5], вызвано перестройкой кислородной подрешетки образцов, а также началом выделения из их структуры так называемого «слабосвязанного» кислорода. Величина КЛТР керамики Ba_{0,2}Sr_{0,8}Pb_{1+y}O_{3+2y} была меньше, чем Ba_{0,4}Sr_{0,6}Pb_{1+y}O_{3+2y} (табл. 2), что обусловлено увеличением энергии металл-кислородных взаимодействий в структуре образцов при повышении

степени замещения бария стронцием; результаты дилатометрии согласуются с данными РФА, в соответствии с которыми увеличение содержания стронция в образцах приводит к сжатию их элементарной ячейки.

Таблица 2

Исследованные образцы являлись полупроводниками *п*-типа, величина термо-ЭДС которых немонотонно изменялась при повышении температуры, достигая минимального значения вблизи 700-800 К (рис. 2, а, б). Учитывая результаты работы [5], возрастание термо-ЭДС образцов при температурах выше 700-800 К можно объяснить уменьшением степени окисления катионов свинца Pb^{4+} до Pb^{2+} в поверхностном слое зерен керамики, сопровождающимся выделением «слабосвязанного» кислорода из керамики в газовую фазу. Значения электропроводности и термо-ЭДС (по модулю) для образцов серии Ва_{0,2}Sr_{0,8}Pb_{1+v}O_{3+2v} были выше, чем для керамики $Ba_{0,4}Sr_{0,6}Pb_{1+y}O_{3+2y}$, причем максимальные значения о и S наблюдали для керамики состава Ba_{0.2}Sr_{0.8}Pb_{1.1}O_{3.2}.

Значения фактора мощности образцов Ва_{0,2}Sr_{0,8}Pb_{1,1}O_{3,2} и Ва_{0,2}Sr_{0,8}Pb_{1,2}O_{3,4} возрастали, а остальных – немонотонно изменялись при увеличении температуры (рис. 2, ϵ), причем наибольшее значение фактора мощности зафиксировано для керамики состава Ва_{0,2}Sr_{0,8}Pb_{1,1}O_{3,2} – 1,36 мВт/(м · K²) при температуре 1000 К.

Рис. 2. Температурные зависимости электропроводности (*a*), коэффициента термо-ЭДС (*б*), фактора мощности (*в*) керамики Ba_{0,4}Sr_{0,6}PbO₃ (*1*), Ba_{0,4}Sr_{0,6}Pb_{1,1}O_{3,2} (*2*), Ba_{0,4}Sr_{0,6}Pb_{1,2}O_{3,4} (*3*), Ba_{0,2}Sr_{0,8}PbO₃ (*4*), Ba_{0,2}Sr_{0,8}Pb_{1,1}O_{3,2} (*5*), Ba_{0,2}Sr_{0,8}Pb_{1,2}O_{3,4} (*6*)

Рис. 3. Температурные зависимости общей теплопроводности (λ) (I), а также решеточного ($\lambda_{\text{реш}}$) (2) и электронного вклада в нее ($\lambda_{3\pi}$) (3) образцов Ba_{0.2}Sr_{0.8}PbO₃ (a), Ba_{0.2}Sr_{0.8}Pb_{1.1}O_{3.2} (δ), Ba_{0.2}Sr_{0.8}Pb_{1.2}O_{3.4} (b), Ba_{0.4}Sr_{0.6}Pb_{1.1}O_{3.2} (z)

Результаты измерения теплопроводности керамики (Ba,Sr)Pb_{1+y}O_{3+2y} приведены на рис. 3. Как видно, при увеличении температуры теплопроводность керамики Ba_{0,2}Sr_{0,8}Pb_{1+y}O_{3+2y}, в целом, уменьшается, а образца Ba_{0,4}Sr_{0,6}Pb_{1,1}O_{3,2} – возрастает. Величина λ керамики заметно снижается при увеличении содержания в ней оксида свинца и, в целом, практически не зависит от соотношения Ba : Sr в образцах.

Электронная составляющая теплопроводности керамики состава $Ba_{0,4}Sr_{0,6}Pb_{1,1}O_{3,2}$ была несколько выше, чем для образцов серии $Ba_{0,2}Sr_{0,8}Pb_{1+y}O_{3+2y} - 0,02\lambda < \lambda_{_{3Л}} < 0,03\lambda$ и $\lambda_{_{3Л}} \le 0,01\lambda$ соответственно, при этом с ростом температуры во всех случаях $\lambda_{_{3Л}}$ незначительно и практически линейно возрастала. Таким образом, за счет колебаний решетки (фононов) переносится практически все тепло в образцах $Ba_{0,2}Sr_{0,8}Pb_{1+y}O_{3+2y}$ ($\lambda_{_{pem}} \approx \lambda$) и его преобладающая часть – в керамике $Ba_{0,4}Sr_{0,6}Pb_{1,1}O_{3,2}$ (0,97 $\lambda < \lambda_{pem} < 0,98\lambda$).

На основании полученных данных были рассчитаны значения показателя термоэлектрической добротности (параметра Иоффе) исследованной керамики (*ZT*). Как видно из рис. 4, величина *ZT* керамики возрастает при увеличении температуры, причем наиболее сильный рост параметра Иоффе наблюдается для составов $Ba_{0,2}Sr_{0,8}Pb_{1+y}O_{3+2y}$, что, в основном, определяется характером температурной зависимости теплопроводности образцов. В исследованном интервале температур наибольшим значением показателя добротности характеризуется керамика $Ba_{0,2}Sr_{0,8}Pb_{1,2}O_{3,4}$, для которой при температуре 423 К *ZT* составляет 0,033.

На основе керамики состава $Ba_{0,2}Sr_{0,8}Pb_{1,1}O_{3+\delta}$ (проводник *n*-типа) и $Na_{0,55}Co_{0,9}Ni_{0,1}O_2$ (проводник *p*-типа) был изготовлен опытный образец термоэлектрического модуля и определены рабочие характеристики этого модуля при различных температурах.

Для изготовления модуля (рис. 5, *в*) вначале на поверхности непроводящей керамики на осно-

ве титаната-алюмината лантана-кальция (8) размером приблизительно 0,5×1,0 см формировали серебряные контакты (7) путем вжигания серебряной пасты ($T_{\text{вжиг}} = 1073 \text{ K}, t_{\text{вжиг}} = 15 \text{ мин}$). Из массивных образцов термоэлектрической керамики (Ba_{0.2}Sr_{0.8}Pb_{1.1}O_{3+δ} (3) и Na_{0.55}Co_{0.9}Ni_{0.1}O₂ (4)) вырезали бруски размером около 0,5×0,5×0,5 см каждый, которые затем соединяли с контактами 7 при помощи серебряной пасты, в которую для уменьшения контактного сопротивления на границе раздела фаз «Ад – оксид» добавляли ≈10 мас. % порошка припекаемого оксида (5 и 6 для Ba_{0.2}Sr_{0.8}Pb_{1.1}O₃₊₆ и Na_{0.55}Co_{0.9}Ni_{0.1}O₂ соответственно). Полученное изделие вносили в печь электронагрева и выдерживали в ней при 1073 К до образования прочных межфазных контактов.

Рис. 4. Температурная зависимость показателя термоэлектрической добротности керамики Ba_{0,2}Sr_{0,8}PbO₃ (1), Ba_{0,2}Sr_{0,8}Pb_{1,1}O_{3,2} (2), Ba_{0,2}Sr_{0,8}Pb_{1,2}O_{3,4} (3), Ba_{0,4}Sr_{0,6}Pb_{1,1}O_{3,2} (4)

Выходное напряжение модуля (U_0) измеряли при отсутствии тока во внешней цепи при помощи высокоомного вольтметра; сопротивление модуля (с учетом внешних токоподводов) определяли по методу вольтметра-амперметра. Горячую сторону модуля помещали в печь электронагрева, а холодную охлаждали при помощи смеси воды со льдом. Выходное напряжение модуля (U_0) возрастало при увеличении температуры (рис. 5, *a*), достигая максимального значения $U_0 = 130$ мВ при $T_r = 770$ K, а его величина соответствовала ожидаемой: $U_0 \approx (S_p - S_n)(T_r - T_x)$, где S_p и S_n – средние значения термо-ЭДС *p*- и *n*-ветвей модуля в интервале температур $T_x - T_r$, где T_x и T_r – температуры холодной и горячей стороны модуля соответственно.

Рис. 5. Зависимость выходного напряжения (*a*) и мощности (*б*) термоэлектрического модуля от температуры горячего спая (*l* – первый цикл; *2* – второй цикл), а также схема термоэлектрического модуля (*3* – керамика Ba_{0,2}Sr_{0,8}Pb_{1,1}O_{3,2}; *4* – керамика Na_{0,55}Co_{0,9}Ni_{0,1}O₂; *5* – композит Ba_{0,2}Sr_{0,8}Pb_{1,1}O_{3,2} – Ag; *6* – композит Na_{0,55}Co_{0,9}Ni_{0,1}O₂ – Ag; *7* – серебряные контакты; *8* – керамика титаната-алюмината лантана-кальция; *T*_г и *T*_х – температуры горячей и холодной стороны модуля соответственно)

Мощность модуля немонотонно изменялась с ростом температуры и была максимальной при $T_{\Gamma} = 400-500 \text{ K} - 370 \text{ мкВт}$ (рис. 5, δ), что соответствует удельной мощности модуля 315 мкВт · Γ^{-1} или 1,2 мВт · см⁻³. Значения U_0 и W модуля воспроизводились при неоднократном его термоциклировании (на рис. 5 приведены данные, полученные в процессе двух первых циклов нагрева-охлаждения модуля); таким образом, изготовленный нами опытный образец демонстрирует устойчивые во времени характеристики.

Малая мощность модуля обусловлена высокими значениями его электросопротивления, что, по всей видимости, связано с высокими значениями контактного сопротивления на границе раздела фаз «оксид – Ag». Таким образом, повышения рабочих характеристик модуля можно добиться за счет улучшения морфологии межфазных границ «оксид – металл», чего можно достичь, например, за счет, изменения составов контактных слоев модуля 5 и 6 (рис. 5, в) или условий формирования межфазных границ (температура и время вжигания контактов и т. д.).

Заключение. Твердофазным методом получена керамика состава Ва_{0.4}Sr_{0.6}Pb_{1+v}O_{3+2v} и $Ba_{0,2}Sr_{0,8}Pb_{1+y}O_{3+2y}$ (*y* = 0,00; 0,10; 0,20), определен ее фазовый состав, изучены кристаллическая структура, физико-химические и термоэлектрические свойства. Выделены электронный и решеточный вклады в теплопроводность керамики, рассчитаны значения ее фактора мощности и показателя термоэлектрической добротности. Проанализировано влияние степени замещения бария стронцием, а также количества избыточного оксида свинца в образцах на спекаемость керамики и ее характеристики. Показано, что наилучшими термоэлектрическими характеристиками при высоких температурах обладает керамика состава $Ba_{0,2}Sr_{0,8}Pb_{1,1}O_{3,2}$ ($P_{1000} = 1,36$ мBт/(м · K²), а при температурах, близких к комнатной, - образец $Ba_{0.2}Sr_{0.8}Pb_{1.2}O_{3.4}$ ($ZT_{423} = 0,033$). На основе керамики Ba_{0.2}Sr_{0.8}Pb_{1.1}O_{3+δ} (проводник *n*-типа) и Na_{0.55}Co_{0.9}Ni_{0.1}O₂ (проводник *p*-типа) изготовлен опытный образец термоэлектрического модуля и установлены его рабочие характеристики (выходное напряжение и мощность) при различных температурах.

Авторы благодарят Л. Е. Евсееву (ИТМО им. А. В. Лыкова НАН Беларуси) за измерение теплопроводности образцов и Н. С. Красуцкую (БГТУ) за предоставление керамики Na_{0,55}Co_{0,9}Ni_{0,1}O₂. Работа выполнена при частичной поддержке Белорусского республиканского фонда фундаментальных исследований (грант X10M–026).

Литература

1. Oxide Thermoelectrics. Research Signpost / ed. by K. Koumoto, I. Terasaki, N. Murayama. – Trivandrum, India, 2002. – 255 p.

2. Yasukawa, M. A promising oxide material for high-temperature thermoelectric energy conversion: $Ba_{1-x}Sr_xPbO_3$ solid solution system / M. Yasukawa, N. Murayama // Mat. Sci. & Eng. – 1998. – B54. – P. 64–69.

3. Термоэлектрические свойства некоторых перовскитных оксидов / А. И. Клындюк [и др.] // Термоэлектричество. – 2009. – № 3. – С. 76–84.

4. Чижова, Е. А. Влияние катионной нестехиометрии на свойства метаплюмбата стронция / Е. А. Чижова, Д. В. Пилипчук, А. И. Клындюк // Труды БГТУ. – 2011. – № 3: Химия и технология неорган. в-в. – С. 61–64.

5. Клындюк, А. И. Аномальные свойства твердых растворов на основе BaPbO₃ при высоких температурах / А. И. Клындюк, Г. С. Петров, Л. А. Башкиров // Неорган. материалы. – 2001. – Т. 37, № 4. – С. 482–488.

Поступила 03.03.2012