УДК 621.785.36+537.621.4+546.73+54-165

А. А. Затюпо, аспирант (БГТУ); Л. А. Башкиров, доктор химических наук, профессор (БГТУ);

Т. А. Шичкова, кандидат химических наук, доцент (БГТУ);

Г. С. Петров, кандидат химических наук, доцент (БГТУ)

ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА ТВЕРДЫХ РАСТВОРОВ Ві_{1-х}La_xFe_{1-x}Co_xO₃, Синтезированных с использованием разных методов

С использованием твердофазной и золь-гель технологии были синтезированы твердые растворы системы $BiFeO_3 - LaCoO_3$. Определены параметры их кристаллической решетки. В интервале температур 300–1050 К на воздухе исследованы температурные зависимости электропроводности и термического расширения полученных образцов $Bi_{1-x}La_xFe_{1-x}Co_xO_3$ (x = 0; 0,05; 0,1; 1,0). Показано, что использование золь-гель технологии позволило снизить температуру и время синтеза. При этом полученные твердофазным методом образцы имели меньшее значение коэффициента термического расширения и удельной электропроводности.

Solid solutions of BiFeO₃ – LaCoO₃ system were synthesized using solid-state and sol-gel technology. The parameters of the crystal lattice were determined. Temperature dependences of electrical conductivity and thermal expansion of the samples $Bi_{1-x}La_xFe_{1-x}Co_xO_3$ (x = 0; 0,05; 0,1; 1,0) were investigated in air in the temperature range 300–1050 K. It is shown that usage of sol-gel technology allowed to reduce the temperature and time of synthesis. At the same time the samples prepared by solid-state method had a lower coefficient of thermal expansion and electrical conductivity.

Введение. Мультиферроики, т. е. материалы, в которых сочетаются как ферромагнитные, так и сегнетоэлектрические свойства, представляют большой интерес для создания новых магнитоэлектрических материалов, в которых электрическими свойствами можно управлять с помощью магнитного поля и, наоборот, осуществлять модуляцию магнитных свойств электрическим полем. Это позволяет говорить о том, что сегнетомагнетики с большой величиной магнитоэлектрического эффекта могут найти применение в различных областях сенсорной электроники, для создания устройств хранения информации со сверхвысокой плотностью записи, а также являются перспективными не содержащими токсичного свинца пьезоэлектрическими материалами с низкой температурой спекания [1–5].

Наиболее известным среди мультиферроиков является BiFeO₃, в котором происходит дипольное упорядочение вблизи 1100 К и антиферромагнитное упорядочение при \approx 640 К, что открывает возможности применения данного материала при комнатной температуре [6, 7]. Более того, на его основе могут быть изготовлены разнообразные твердые растворы, что еще больше расширяет значимость данных соединений. Однако приготовление керамического однофазного BiFeO₃ несколько затруднено, поскольку на фазовой диаграмме системы Bi₂O₃ – Fe₂O₃ значительные области занимают еще два бинарных соединения – Bi₂Fe₄O₉ и Bi₂₅FeO₃₉ [8, 9].

В связи с этим в данной работе проведены исследования физико-химических свойств твердых растворов ферритов-кобальтитов висмуталантана Bi_{1-x}La_xFe_{1-x}Co_xO₃, образованных в результате одновременного изовалентного замещения в BiFeO₃ ионов Bi³⁺ ионами La³⁺ и эквивалентного количества ионов железа Fe³⁺ ионами Co³⁺, полученных с использованием золь-гель технологии и твердофазным методом (ТФМ).

Методика эксперимента. Для синтеза поликристаллических образцов твердых растворов $Bi_{1-x}La_xFe_{1-x}Co_xO_3$ (x = 0; 0,05; 0,1; 1,0) методом твердофазных реакций использовали оксиды Bi₂O₃, Fe₂O₃, La₂O₃ и Co₃O₄. Оксид лантана La₂O₃ предварительно был прокален на воздухе при температуре 1000°С в течение 1 ч. Порошки исходных соединений, взятых в заданных молярных соотношениях, смешивали и мололи на протяжении 30 мин в планетарной мельнице Pulverizette 6 с добавлением этанола. Полученную шихту с внесенным этанолом прессовали под давлением 50-75 МПа в таблетки диаметром 25 мм и высотой 5-7 мм и затем обжигали при 800°С на воздухе в течение 8 ч. После предварительного обжига таблетки дробили, перемалывали, прессовали в бруски длиной 30 мм и сечением 5×5 мм². Условия синтеза на воздухе в зависимости от состава образцов варьировались в широких пределах: $T_1 = 800^{\circ}$ C (8 ч), *T*₂ = 830°С (30 мин) для образцов *x* = 0; 0,05; 0,1 и *T*₂ = 1150°С (2 ч) для *x* = 1,0.

Для получения ферритов-кобальтитов висмута-лантана $\text{Bi}_{1-x}\text{La}_x\text{Fe}_{1-x}\text{Co}_x\text{O}_3$ (x = 0; 0,05; 0,1; 1,0) по золь-гель технологии использовалась разработанная ранее методика получения твердых растворов манганитов со структурой перовскита [10]. Порошки, полученные золь-гель методом (ЗГМ), подвергались прессованию в таблетки и обжигу на воздухе при температурах: $T_1 = 650^{\circ}\text{C}$ (2 ч), $T_2 = 750^{\circ}\text{C}$ (0,5 ч) для x = 0, $T_2 = 800^{\circ}$ С (0,5 ч) для x = 0,05, $T_2 = 820^{\circ}$ С (0,5 ч) для x = 0,1, $T_2 = 1100^{\circ}$ С (2 ч) для x = 1,0.

Рентгеновские дифрактограммы получали на дифрактометре D8 ADVANCE с использованием Си K_{α} -излучения. Параметры кристаллической структуры определяли при помощи рентгеноструктурного табличного процессора RTP и данных картотеки международного центра дифракционных данных (ICDD JCPDS).

Электропроводность измеряли на постоянном токе на воздухе в интервале температур 300–1000 К четырехконтактным методом с использованием серебряных электродов, нанесенных тонким слоем на торцевые поверхности образцов размером $5 \times 5 \times 4$ мм путем вжигания серебряной пасты.

Термическое расширение образцов исследовали на воздухе в интервале температур 300–1000 К при помощи кварцевого дилатометра в динамическом (скорость нагрева и охлаждения $3-5 \text{ K} \cdot \text{мин}^{-1}$) режиме.

Результаты и их обсуждение. В литературе широко представлены результаты исследований твердых растворов двойных систем BiFeO₃ – LnFeO₃ (Ln – редкоземельный элемент), в которых BiFeO₃ и LnFeO₃ имеют ромбоэдрическую и орторомбическую структуру перовскита соответственно. В системе BiFeO₃ – LaCoO₃ оба компонента имеют кристаллическую структуру ромбоэдрически искаженного перовскита. Рентгенограммы образцов системы BiFeO₃ – LaCoO₃ (рис. 1), полученных методом твердофазных реакций при температуре синтеза $T_1 = 800^{\circ}$ С (8 ч), $T_2 = 830^{\circ}$ С (30 мин) при x = 0; 0,05; 0,1 и $T_2 = 1150^{\circ}$ С (2 ч) при x = 1,0,показали, что данные твердые растворы Ві_{1-х}La_xFe_{1-x}Co_xO₃ имели ромбоэдрическое искажение элементарной ячейки перовскита. Кристаллическая структура BiFeO₃ характеризовалась следующими параметрами элементарной ячейки: a = 3,963 Å и $\alpha = 89^{\circ}44'$, что согласуется с литературными данными [11]. При этом на рентгенограммах образцов Bi_{1-r}La_rFe_{1-r}Co_rO₃ $(0 \le x \le 0, 1)$ присутствовали примесные фазы Bi₂Fe₄O₉ и Bi₂₅FeO₃₉, количество которых для образца BiFeO₃ составляло ≈5%. При увеличении степени замещения х содержание фаз муллита ($Bi_2Fe_4O_9$) и силленита ($Bi_{25}FeO_{39}$) немного повышается, что свидетельствует о термической неустойчивости Bi_{1-x}La_xFe_{1-x}Co_xO₃ и сложном механизме протекания твердофазных реакций в системах на основе феррита висмута, имеющего температуру плавления ($T = 950^{\circ}$ C) значительно меньше температуры плавления второго компонента системы LaCoO₃ (1600°C) [12].

Результаты рентгенофазового анализа образцов $Bi_{1-x}La_xFe_{1-x}Co_xO_3$ (x=0; 0,05; 0,1; 1,0), полученных по золь-гель технологии, показали, что кристаллизационные процессы в порошках ксерогелей начинаются уже при термообработке их в течение 2 ч при 650°С, о чем свидетельствует появление на рентгенограммах размытых рефлексов, соответствующих по положению рефлексам основной фазы синтезированных твердых растворов $Bi_{1-x}La_xFe_{1-x}Co_xO_3$ (рис. 2). Однако образцы со степенью замещения x = 0,05 и 0,1 также имели примесные фазы $Bi_2Fe_4O_9$ и $Bi_{25}FeO_{39}$, количество которых было незначительным по сравнению с соответствующими образцами, полученными твердофазным методом.

Рис. 1. Рентгенограммы образцов Bi_{1-x}La_xFe_{1-x}Co_xO₃, синтезированных твердофазным методом,

при различных значениях x: l - 0; 2 - 0,05; 3 - 0,1; 4 - 1,0; * - фазы Bi₂₅FeO₃₉, Bi₂Fe₄O₉

Образцы $Bi_{1-x}La_xFe_{1-x}Co_xO_3$ (x = 0; 0,05; 0,1; 1,0), полученные золь-гель методом при температуре 650°С, в дальнейшем были дополнительно обожжены при температуре выше 650°С. Такая термообработка по-разному отра-

зилась на фазовом составе образцов. Так, например, обжиг при 800°С (30 мин) образца с x = 0.05 и при 820°С (30 мин) образца с x = 0.1привел к существенному уменьшению содержания в них примесей. Для образца, соответствующего по составу чистому ферриту висмута (x = 0), после термообработки при 750°С (30 мин) дифрактограммы показали увеличение количества примесей и уменьшение содержания основной фазы. Вероятно, образование феррита висмута начинается при температуре $T < 650^{\circ}$ С, а при $T > 650^{\circ}$ C происходит разложение BiFeO₃ с образованием примесных фаз. Термообработка порошков, соответствующих кобальтиту лантана LaCoO₃ (x = 1), уже при 650°С (2 ч) позволила получить чистую фазу ромбоэдрически искаженного перовскита (рис. 2). Таким образом, при синтезе образцов ферритов-кобальтитов висмута-лантана Bi_{1-x}La_xFe_{1-x}Co_xO₃ по золь-гель технологии происходит снижение температуры и времени синтеза по сравнению с твердофазным методом их получения из соответствующих оксидов металлов.

Результаты измерений удельной электропроводности (рис. 3) показали, что σ образцов Bi_{1-x}La_xFe_{1-x}Co_xO₃ в интервале температур 300– 1000 К растет экспоненциально с повышением температуры, что свидетельствует о полупроводниковом характере проводимости. Увеличение степени замещения *x* ионов Bi³⁺ ионами La³⁺ и ионов Fe³⁺ ионами Co³⁺ также приводит к постепенному повышению значения σ . При этом значения σ для образцов твердых растворов Bi_{1-x}La_xFe_{1-x}Co_xO₃, полученных с использованием золь-гель метода, несколько выше, чем для соответствующих образцов ферритов-кобальтитов висмута-лантана, синтезированных методом твердофазных реакций. Например, при температуре 850 К удельная электропроводность образца $Bi_{0.95}La_{0.05}Fe_{0.95}Co_{0.05}O_3$ увеличивается от 1,56 · 10⁻² См · см⁻¹ для образца, синтезированного методом твердофазных реакций, до 11,08 См · см⁻¹ для соответствующего твердого раствора, полученного по золь-гель технологии (рис. 3, кривые 1, 1^{*}). Кроме того, образцы твердых растворов, полученные золь-гель методом, имеют меньшее значение энергии активации электропроводности (рис. 4, табл. 1). Это может свидетельствовать о более высокой концентрации носителей заряда в данных образцах.

Ві_{1-x}La_xFe_{1-x}Co_xO₃, синтезированных твердофазным (1, 2) и золь-гель (1^* , 2^*) методами, при различных значениях x: I, $I^* - 0.05$; 2, $2^* - 0.1$

Таблица 1

Значения энергии активации электропроводности (*E*_a) в области промежуточных температур, рассчитанной по линейным участкам зависимости lnσ от *T*⁻¹ для образцов Bi_{1-x}La_xFe_{1-x}Co_xO₃

$Bi_{1-x}La_xFe_{1-x}Co_xO_3$	<i>E</i> _a , эВ	ΔT , K	<i>E</i> _a , эВ	$\Delta T, K$	
при х	ЗГМ		ΤΦМ		
0	_	_	0,45	634–776	
0,05	0,685	340-800	0,72	445-628	
0,1	0,584	360-750	1,26	545-712	
1,0	_	_	0,45	396-557	

Полученные дилатометрическим методом температурные зависимости относительного удлинения $\Delta l / l_0$ образцов $\text{Bi}_{1-x}\text{La}_x\text{Fe}_{1-x}\text{Co}_x\text{O}_3$, синтезированных золь-гель методом (рис. 5), показывают, что для всего интервала температур 300–1100 К наблюдается линейная зависимость $\Delta l / l_0 = f(T)$ для образцов со степенью замещения x = 0; 0,05 и 0,1. Подобное поведение прослеживается также и для образцов x = 0;

0,05 и 0,1, полученных твердофазным методом. Это может свидетельствовать об отсутствии каких-либо фазовых переходов в этих образцах в исследованном интервале температур. Для образца со степенью замещения x = 1,0 в интервале температур 300–1100 К зависимость $\Delta l / l_0 = f(T)$ носит нелинейный характер, что, вероятно, обусловлено переходом ионов кобальта из низко- в промежуточно и/или высокоспиновое состояние, сопровождающимся увеличением объема элементарной ячейки.

Рис. 5. Температурная зависимость относительного удлинения $\Delta l / l_0$ образцов Bi_{1-x}La_xFe_{1-x}Co_xO₃, синтезированных твердофазным (1) и золь-гель (2^{*}, 3^{*}, 4^{*}) методами, при различных значениях *x*: $l - 0; 2^* - 0,05; 3^* - 0,1; 4^* - 1,0$

Таблица 2

Средние линейные коэффициенты термического расширения (α) для образцов Bi_{1-x}La_xFe_{1-x}Co_xO₃ в области низких, промежуточных и высоких температур (α_1 , α_2 , α_3 соответственно) и интервалы температур ΔT_1 , ΔT_2 , ΔT_3 для низко-, промежуточно- и высокотемпературных линейных участков зависимостей $\Delta l / l_0$ от *T* соответственно

x	$\begin{array}{c} \alpha_1 \cdot 10^6, \\ K^{-1} \end{array}$	$\Delta T_1,$ K	$\begin{array}{c} \alpha_2 \cdot 10^6, \\ K^{-1} \end{array}$	$\Delta T_2,$ K	$\begin{array}{c} \alpha_3 \cdot 10^6, \\ K^{-1} \end{array}$	Δ <i>T</i> ₃ , K
0	-	-	11,8	415-	-	-
ΤΦМ				955		
0,05	_	-	13,2	385-	_	_
ЗГМ				900		
0,05	-	-	10,7	380-	-	-
ΤΦМ				890		
0,1	_	-	13,8	398-	_	-
ЗГМ				866		
0,1	_	-	11,6	330-	-	-
ΤΦМ				740		
1,0	18,9	340-	29,3	510-	19,7	715-
ЗГМ		440		680		930
1,0	17,7	300-	24,2	450-	21,6	710-
ΤΦМ		430		700		1070

Величины среднего линейного коэффициента теплового расширения (α) образцов Ві_{1-x}La_xFe_{1-x}Co_xO₃, рассчитанные для интервалов температур, в которых наблюдается линейная зависимость $\Delta l / l_0$ от *T*, приведены в табл. 2. В данной таблице указаны также протяженности интервалов температур (ΔT_1 , ΔT_2 , ΔT_3), для которых наблюдается линейная зависимость $\Delta l / l_0$ от *T*. Значения среднего коэффициента линейного теплового расширения исследованных твердых растворов, полученных с использованием золь-гель технологии, оказались несколько выше, чем для соответствующих образцов, синтезированных методом твердофазных реакций.

Заключение. С использованием твердофазной и золь-гель технологии были синтезироватвердые растворы системы BiFeO₃ – ΗЫ LaCoO₃. Разработанная золь-гель технология получения прекурсоров позволила снизить температуру и уменьшить время синтеза твердых растворов на основе феррита висмута, получить при этом образцы твердых растворов $Bi_{1-x}La_xFe_{1-x}Co_xO_3$ с небольшим количеством примесных фаз. Однако в образце BiFeO₃, полученном золь-гель методом, содержание примесных фаз Bi₂Fe₄O₉ и Bi₂₅FeO₃₉ было более значительным, чем для феррита висмута, синтезированного твердофазным методом. По результатам исследований было показано, что значения удельной электропроводности и линейного коэффициента термического расширения для твердых растворов Bi_{1-x}La_xFe_{1-x}Co_xO₃, полученных золь-гель методом, оказались несколько выше, а энергия активации электропроводности меньше, чем для соответствующих образцов, синтезированных методом твердофазных реакций.

Работа выполнена в рамках задания 1.02 ГПНИ «Функциональные и машиностроительные материалы и технологии, наноматериалы и нанотехнологии в современной технике».

Литература

1. Звездин, А. К. Фазовые переходы и гигантский магнитоэлектрический эффект в мультиферроиках / А. К. Звездин, А. П. Пятаков // Успехи физических наук. – 2004. – Т. 174, № 4. – С. 465–470.

2. Слабый ферромагнетизм в мультиферроиках на основе BiFeO₃ / И. О. Троянчук [и др.] // Письма в ЖЭТФ. – 2009. – Т. 89, вып. 4. – С. 204–208.

3. Особенности тепловых, магнитных и диэлектрических свойств мультиферроиков BiFeO₃ и Bi_{0,95}La_{0,05}FeO₃ / А. А. Амиров [и др.] // Физика твердого тела. – 2009. – Т. 51, вып. 6. – С. 684–692. 4. Макоед, И. И. Получение и физические свойства мультиферроиков: монография / И. И. Макоед. – Брест: БрГУ, 2009. – 181 с.

5. Влияние электрического поля на магнитные переходы «несоразмерная – соразмерная фаза» в мультиферроике типа BiFeO₃ / А. Г. Жданов [и др.] // Физика твердого тела. – 2006. – Т. 48, вып. 1. – С. 83–89.

6. Веневцев, Ю. Н. Сегнетомагнетики / Ю. Н. Веневцев, В. В. Гагулин, В. Н. Любимов. – М.: Наука, 1982. – 224 с.

7. Phase Transition, Magnetic and Piezoelectric Properties of Rare-Earth-Substituted BiFeO₃ Ceramics / I. O. Troyanchuk [et al.] // J. Am. Ceram. Soc. – 2011. – Vol. 94, Iss. 12. – P. 4502–4506.

8. Особенности образования BiFeO₃ в смеси оксидов висмута и железа (III) / М. И. Морозов

[и др.] // Журнал общей химии. – 2003. – Т. 73, вып. 11. – С. 1772–1776.

9. Reaction pathways in the solid state synthesis of multiferroic $BiFeO_3 / M$. S. Bernardo [et al.] // J. Eur. Ceram. Soc. -2011. - Vol. 31. - P. 3047-3053.

10. Shichkova, T. A. Synthesis of $Ln_{1-x-y}Me'_xMe''_yMnO_3$ (Ln: La, Nd; Me' and Me'': Sr, Pb) solid solutions using sol-gel method / T. A. Shichkova, G. G. Emello, L. A. Bashkirov // Functional Materials. – 2006. – Vol. 13, № 2. – P. 350–354.

11. Оптические свойства керамики BiFeO₃ в диапазоне частот 0,3–30 THz / Г. А. Командин [и др.] // Физика твердого тела. – 2010. – Т. 52, вып. 4. – С. 684–692.

12. Портной, К. И. Кислородные соединения редкоземельных элементов / К. И. Портной, Н. И. Тимофеева. – М.: Металлургия, 1986. – 480 с. Поступила 01.03.2012