- 9. С правочник поплавкости солевых систем, Изд-во АН СССР, М.-...Л., 1961, т. 1. 10. В. В. Серебренников. Химия редкоземельных элементов. Изд. Томск.
- ун-та, Томск, 1959. 11. Сун Юй-линь, Г. И. Новиков. Ж. неорган. химии, 8, 700 (1963). 12. Г. И. Новиков, А. К. Баев. Вестн. ЛГУ, № 22, сер. физики и химии, вып. 4, 116 (1961).

Ленинградский государственный университет Химический факультет

Поступила в редакцию 4 июня 1963 г.

536.65

Г. И. НОВИКОВ, Ф. Г. ГАВРЮЧЕНКОВ

ДАВЛЕНИЕ НАСЫЩЕННОГО ПАРА ХЛОРИДОВ Са, Sr, Ba

Испарение хлоридов щелочноземельных элементов в настоящее время изучено недостаточно. Надежными можно считать данные только для хлоридов бериллия [1] и магния [2], а для хлоридов Са, Sr и Ва имеются лишь оценочные данные Брюэра [3].

Методом точек кипения [4] нами измерено давление насыщенного пара хлоридов Са, Sr и Ва в интервале температур 1315—1437°. Температура измерялась с точно-стью ± 2°, давление — с точностью ± 0,1 мм pm. cm. с помощью манометра МЧР-3. Полученные нами результаты приведены в табл. 1.

Таблица 1

Давление насыщенного пара хлоридов Са, Sr, Ва в зависимости от температуры

CaCl ₂		SrCl ₂		BaCl ₂		CaCl₂		SrCl_2		$BaCl_2$	
t°, C	р, мм рт. ст.	t°, C	р, мм. рт. ст.	t°, C	р. мм, рт. ст.	t°, C	р, мм рт. ст.	t°, C	р, мм, рт. ст.	t°, C	р. мм, рт. ст.
1318 1326 1382	3,8 4,6 8,3	1347 1393 1437	1,6 3,0 4,1	1315 1358 1400	$1,5 \\ 2,5 \\ 4,0$	$\begin{array}{c}1426\\1428\end{array}$	13,6 14,1			1400 1437	$3,4 \\ 5,5$

Основную неточность в измерения вносит то обстоятельство, что во всем рабочем интервале температур мы имели дело с очень небольшими давлениями насыщенного пара. С этой точки зрения наиболее надежными следует считать данные для CaCl2, наименее точными — для SrCl₂. По данным табл. 1, а также используя данные [5] по теплоемкости расплавлен-

ных хлоридов и оценочные значения теплоемкости хлоридов в газообразном состоянии, были выведены уравнения зависимости давления насыщенного цара от температуры для широкого интервала температур и вычислены некоторые термодинамические характеристики рассматриваемых процессов (табл. 2).

Таблипа 2

Термодинамические характеристики процесса испарения хлоридов Са, Sr, Ba

Хлорид		Ľ.	Субли					
	Коэффиі lg р мм =	циенты ураг = A — b/T +	енения clg T	$\Delta H_{\Pi^{*}}^{0}$,	ΔS_{T}^{0} ,	ΔH_{TDII}^0	∆Н° ₂₈₈ , ккал/моль	т _{кип.} , °К
	A	В	С	ккал/моль	эн. ед.	ккал/моль		
${\mathop{\rm CaCl} olimits}_2^2 { m SrCl}_2 { m BaCl}_2$	$28,67 \\ 34,55 \\ 32,79$	17,500 18,430 17,800	$5,33 \\7,15 \\6,69$	$63+5 \\ 61+5 \\ 61+5$	28 ± 3 26 ± 3 26 ± 3	$76+5 \\ 72+5 \\ 68\pm5$	$83\pm 5\ 84\pm 5\ 80\pm 5$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$

Большая величина погрешностей, приводимая нами для теплот и энтропий испарения и сублимации, объясняется вышеуказанной относительной неточностью измерений. Стандартные энтропии сублимации, полученные нами, по своей величине больше приводимых Брюэром [3] оценочных величин на ~ 10 ккал/моль. Чьи данные

ближе к истинным значениям, сейчас нельзя сказать определенно, так как погрешность измерения с одной стороны, и приближенно вычисленная нами ΔC_P процесса сублимации с другой, могли сильно сказаться на точности полученных величин.

Анализируя результаты и сравнивая их с литературными данными для BeCl₂ и MgCl₂, следует отметить, что температура кипения в ряду BeCl₂-BaCl₂ проходит через максимум при точке кипения SrCl₂.

Такая же зависимость имеется и у фторидов щелочноземельных элементов[6], с той лишь разницей, что в последнем случае максимум температуры кипения приходится на фторид кальция (см. рисунок).

Подобная картина наблюдается и у галогенидов щелочных металлов, где максимум температуры кипения приходится на галогениды натрия. Причины такой экстремальной зависимости точек кипения пока остаются неясными. Возможно, что это связано

Температуры кипения галогенидов щелочноземельных элементов:

1 — фториды, 2 — хлориды

этих (соединений экстремальным ходом разности с наблюдающимся в случае энергии связей в кристаллической решетке и в газообразных молекулах. Об изменении энергии связей, в первом приближении, можно, по-видимому, судить по изменению длин связей в кристаллических решетках по сравнению с газообразными молекулами (табл. 3). Данные по длинам связи газообразных молекул взяты из [7], длины связи

Таблица З

Фторид	δ _{TB}	δ _Γ	$\delta_{TB} - \delta_{\Gamma}$	Хлорид	δ _{TB}	δ _Γ	$\delta_{TB} - \delta_{\Gamma}$
BeF ₂ MgF ₂ CaF ₂ SrF ₂ BaF ₂	1,89 2,12 2,35 2,58 2,81	1,40 1,77 2,10 2,20 2,32	$0,49 \\ 0,35 \\ 0,25 \\ 0,38 \\ 0,49$	BeCl ₂ MgCl ₂ CaCl ₂ SrCl ₂ BaCl ₂	2,33 2,56 2,79 3,02 3,25	$1,75 \\ 2,18 \\ 2,51 \\ 2,67 \\ 2,99$	$0,58 \\ 0,38 \\ 0,24 \\ 0,35 \\ 0,43$

Разность длины связей в кристаллической решетке ($\delta_{\text{тв}}$) и в газообразных молекулах (δ_r) щелочноземельных галогенидов

в кристаллической решетке получены суммированием ионных радиусов Гольдшиилта. Интересно отметить, что разность поляризующих сил катиона и аниона у щелочноземельных галогенидов, которая так или иначе сказывается на энергии связей, также проходит через экстремум (у CaF2 для фторидов и для хлоридов у BaCl2 (см. например [8])).

Литература

- 1. И. Н. Шейко, В. Г. Фешенко. Укр. хим. журн., 28, 478 (1962). 2. Кеlley. U. S. Bur. Mines: Bull., 383 (1935).

- 3. L. Brewer. Chem. Revs. 63, III (1963). 4. Г. И. Новиков, О. Г. Поляченок. Ж. неорган. химии, 6, 1951 (1961). 5. A. S. Dworkin, M. Bredig. J. Phys. Chem., 67, 697 (1963).

- 6. О. Ruff, L. Beucher. Z. anorg. Chem., 219, 576 (1934).
 7. К. С. Краснов. Ж. структурной химии, 1, 209 (1960).
 8. Ю. М. Голутвин. Теплоты образования и типы химической связи в неорганических кристаллах, М., 1962.

Поступила в редакцию 8 июня 1963 г.