ФОТОЛИЗ ВОДНОГО РАСТВОРА ФЕРРИОКСАЛАТА В ПРИСУТСТВИИ СОЛИ ПАЛЛАДИЯ

Т. В. Луцкина, В. В. Свиридов

Исследовали кинетику фотохимических превращений в аэрированных водных растворах, содержащих ионы $\mathrm{Fe}(\mathrm{C_2O_4})_3^3$ — и $\mathrm{PdCl_4^{2-}}$, при рH = $1\pm0,1$. Содержание соли палладия в облучаемом 0,018 м. растворе $(\mathrm{NH_4})_3\mathrm{Fe}(\mathrm{C_2O_4})_3$ изменяли таким образом, чтобы молярное соотношение $(\mathrm{NH_4})_3\mathrm{Fe}(\mathrm{C_2O_4})_3$: $\mathrm{PdCl_2}$ было равно $10:1;\ 10:5;\ 40:40$

Кинетические кривые накопления фотолитических ионов Fe^{2+} достигают максимума, затем наблюдается уменьшение концентрации Fe^{2+} , которое проходит через минимум и снова увеличивается. Начальный квантовый выход фотовосстановления Fe^{3+} на стадии реакции до максимума лишь немного меньше квантового выхода фотовосстановления трехвалентного железа в растворе, не содержащем соли палладия. Соответственно квантовый выход образования палладия на этой стадии реакции очень мал (0.02-0.12), чему соответствует индукционный период на кинетических кривых его накопления. После достижения частицами фотолитического палладия определенного размера они приобретают каталитическую активность в реакции взаимодействия

 $2Fe^{2+} + Pd^{2+} \rightarrow 2Fe^{3+} + Pd^{0},$ (1)

что обусловливает падение концентрации иопов Fe^{2+} в растворе и резкое увеличение скорости образования палладия. Этот последний процесс несет основную ответственность за образование палладия в облучаемых растворах. Рост концентрации Fe^{2+} наблюдается после полного восстановления ионов палладия в растворе.

В статье рассматривается вероятный механизм превращений, протекающих в облучаемых растворах и предполагается, что наряду с процессом (1) протекают и другие процессы, приводящие к восстановлению палладия как за счет взаимодействия двухвалентного палладия с ион-радикалом $C_2O_4^-$, так и за счет фотопереноса электронов в образующемся в растворе комплексе $\operatorname{Pd}\left(C_2O_4\right)_2^{2-}$.

При исследовании кинетики фотолиза 0.018 м. растворов ферриоксалатов, не содержащих соли палладия, установлено, что природа катиона (K+, Na+, NH₄+) не оказывает влияния на квантовый выход реакций, выход же фотовосстановления ${\bf Fe^{3+}}$ в растворах ${\bf Fe_2(C_2O_4)_3}$ той же концентрации почти в 2 раза меньше.

Белорусский государственный университет им. В. И. Ленина Минск Поступила 4.1.1972

Статья полностью депонирована в ВИНИТИ за № 4980-72 Деп. от 3 ноября 1972 г.

УДК 541.121/.123

ОПРЕДЕЛЕНИЕ ДАВЛЕНИЯ И СОСТАВА ПАРА В СИСТЕМЕ Al₂Cl₆ — HgCl₂

Г. И. Новиков, Е. С. Котова

С целью исследования парофазного комплексообразования, а также изучения возможности повышения летучести хлоридов тяжелых металлов мы изучили систему $\mathrm{Al_2Cl_6} - \mathrm{HgCl_2}$. Предварительно измерили давление насыщенного и пенасыщенного пара чистых $\mathrm{Al_2Cl_6}$ и $\mathrm{HgCl_2}$. Полученные данные хорошо согласуются с имеющимися в литературе [1,2]. Из анализа зависимости p=f(t) для $\mathrm{HgCl_2}$ сделали заключение, что в паре содержится незначительное количество димерных молекул. Однако температурный интервал, в котором наблюдается занижение давления за счет димеризации, невелик (\sim 15°) и произвести расчет состава пара $\mathrm{HgCl_2}$ не представляется возможным. Поэтому в дальнейшем паровую фазу $\mathrm{HgCl_2}$ принимали состоящей только из мономерных молекул.

Измерено давление насыщенного, а также давление и плотность (m/V) ненасыщенного пара в системе $\mathrm{Al_2Cl_6} - \mathrm{HgCl_2}$ над составами 79,4 и 74,5 мол.% $\mathrm{AlCl_3}$ (табл.). При расчете молекулярного состава пара без учета комплексообразования суммарное давление оказалось выше экспериментального, что позволило предположить существование в паре смешанного соединения $\mathrm{AlHgCl_5}$, подобного уже изученному $\mathrm{AlSbCl_6}$ [3]. Решением системы четырех уравнений сделан расчет состава пара в предположении, что паровая фаза состоит из $\mathrm{AlCl_3}$, $\mathrm{Al_2Cl_6}$, $\mathrm{HgCl_2}$ и $\mathrm{AlCl_3}$.

· HgCl₂.

Давление и состав пара в системе $Al_2Cl_6 - HgCl_2$

опыт N2 1: V= 11,75 мл; $m_{\rm Hg\,Cl_2}=0,0197$ г; $m_{\rm Al\,Cl_3}=0,03725$ г; опыт N2 2: V= 10,96 мл; $m_{\rm Hg\,Cl_2}=0,02424$ г; $m_{\rm Al\,Cl_3}=0,03484$ г)

Опыт	T, °K	Робщ	p_{AlCl_3}	p_{HgCl_2}	$p_{ m Al_2Cl_6}$	$p_{ ext{KOMII}}$	Кр [атм]
1	581	657	9.3	234,9	366,0	40,5	0,0710
	596	678	12,9	246,5	379,4	37,84	0,1105
	604	690	15,2	250,0	383,5	38,26	0,1310
	620	714	18,9	260,48	396,0	36,68	0,1766
	649	761	35,74	277,3	411,2	35,3	0,3693
	659	779	42,5	284,0	416,9	34,2	0,4639
2	549	583	4,58	179,1	371,9	21,7	0,0496
	579	630	9,3	196,8	398,0	17,6	0,1365
	610	670	16,5	214,7	423,5	13,6	0,3422
	647	720	35,8	229,9	442,2	13,0	0,8324
	682	777	64,1	246,2	456,9	11,1	1,8707
	689	787	71,3	247,2	456,7	12,3	1,8883
	696	796	79,0	247,5	455,6	13,9	1,8558

Температурная зависимость константы равновесия

$$(AlCl3 · HgCl2) \rightleftharpoons (AlCl3) + (HgCl2)$$
 (1)

выражается уравнением

$$\lg K(atm) = 5,9444 - 3351,4 / T. \tag{2}$$

Термодинамические характеристики процесса (1), вычисленные из уравнения (2), имеют следующие значения: $\Delta H_T^{\circ} = 15.3$ ккал/моль и $\Delta S_T^{\circ} = 24.6$ ккал/моль.

Белорусский технологический институт имени С. М. Кирова Минск

Поступила 1.II.1972

ЛИТЕРАТУРА

1. Справочник химика, том. І. 1966 г., изд. «Химия».

2. W. Fischer, O. Rahlfs, B. Benze. Z. anorg. allg. Chem., 205, 1 (1932). 3. A. C. Малкова. Автореферат. канд. дисс., Москва, 1969.

Статья полностью депонирована в ВИНИТИ за № 4961-72 Деп. от 3 ноября 1972 г.

УДК 541.128:541.13

ПОТЕНЦИОМЕТРИЧЕСКИЙ МЕТОД ИССЛЕДОВАНИЯ РЕАКЦИЙ ЖИДКОФАЗНОГО ГИДРИРОВАНИЯ В АППАРАТЕ ИЗ НЕРЖАВЕЮЩЕЙ СТАЛИ

А. Н. Пронь, О. С. Попов, Г. А. Богдановский

Проведено исследование возможности измерения потенциала в металлической аппаратуре для каталитической гидрогенизации в растворах. В ходе эксперимента изучали поведение стали марки X18H10T в атмосфере электролитического водорода в растворе серной кислоты, едкого натра и универсальном буферном растворе Бриттона — Робинсона с различными значениями рН. Установлено, что в этих условиях сталь X18H10T работает как обратимый водородный электрод. В ходе исследования снимали кривые заряжения порошка нержавеющей стали в 0,1 н. H₂SO₄, а также изучали ее адсорбционную способность относительно некоторых веществ, применяемых при каталитическом гидрировании.

Результаты по снятию кривых заряжения платиновой черни посредством платинового и стального электродов в различных средах позволяют сделать вывод о возможности навязывания потенциала стальному электроду со стороны порошкообразного катализатора. Данные опытов по гидрированию модельных веществ в стеклянной «утке» и металлическом реакторе при соблюдении условий, исключающих влияние внешнедиффузионных факторов, свидетельствуют о полном навязывании потенциала стальному электроду или стенке стального реактора.