УДК 541.124+546.431

Л. А. Башкиров, доктор химических наук, профессор (БГТУ); Л. И. Красовская, доктор технических наук, професор (БГТУ); И. А. Великанова, кандидат химических наук, старший преподаватель (БГТУ); Д. Д. Полыко, инженер (БарГУ)

КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА И МАГНИТНЫЕ СВОЙСТВА ФЕРРИТОВ СИСТЕМЫ Sr_{1-x}La_xFe_{12-x}Cu_xO₁₉

Керамическим методом получены образцы ферритов $Sr_{1-x}La_xFe_{12-x}Cu_xO_{19}$ (x = 0; 0, 1; 0, 2; 0, 3; 0, 4; 0, 5). Их состав и структура исследованы методами ИК-спектроскопии и рентгенофазового анализа. Определена зависимость параметров кристаллической ячейки *a* и *c* от величины *x*. Изучено влияние степени замещения ионов железа ионами Cu^{2+} и La^{3+} на микроструктуру и магнитные свойства феррита стронция. Также определены магнитные свойства изотропных постоянных магнитов, изготовленных из La-Cu-замещенных гексаферритов стронция.

The samples of $Sr_{1-x}La_xFe_{12-x}Cu_xO_{19}$ (x = 0; 0,1; 0,2; 0,3; 0,4; 0,5) ferrites were prepared by ceramic method. Their composition and structure were investigated by IR-spectroscopy and X-ray analysis. The dependence of unit cell parameters *a* and *c* upon *x* had been determined. The effects of La-Cu substitution on the microstructure and magnetic properties of Sr-ferrites were studied. Magnetic properties of isotropic constant magnets, which were prepared from La-Cu substituted strontium hexaferrites, were determinate too.

Введение. Начиная с открытия в 50-х годах прошлого века и вплоть до настоящего времени гексаферриты бария $BaFe_{12}O_{19}$ и стронция $SrFe_{12}O_{19}$, интенсивно исследуются как высоко-коэрцитивные магнитные материалы, из которых изготавливают дешевые постоянные магниты и запоминающие устройства с высокой плотностью записи, и которые используются в различных устройствах техники CBЧ.

Известно, что намагниченность насыщения *n*_в одной формульной единицы ферритов ВаFe₁₂O₁₉ и SrFe₁₂O₁₉ в магнетонах Бора равна 20 µ_в и определяется разницей магнитных моментов двух антиферромагнитно ориентированных подрешеток B и A, в которых расположены соответственно 8 и 4 иона Fe³⁺, магнитный момент которых равен 5 μ_B ($n_B = (8 - 4) \times$ \times 5 = 20 µ_B). В подрешетке *B* семь ионов Fe³⁺ находятся в октаэдрических позициях 12k, 2a и один ион Fe³⁺ окружен пятью ионами кислорода (позиция 2b). В подрешетке A два иона Fe³⁺ находятся в тетраэдрических и два иона в октаэдрических позициях $4f_1$ и $4f_2$. Замещением ионов Fe³⁺ в различных позициях другими подходящими ионами можно воздействовать на магнитные свойства ферритов с целью их улучшения.

К настоящему времени традиционными керамическими методами и золь-гель методом синтезированы и изучены Sr-ферриты с замещениями ионами La³⁺–Co²⁺, La³⁺–Zn²⁺, а также Nd³⁺–Zn²⁺, Nd³⁺–Co²⁺, Pr³⁺–Zn²⁺, Pr³⁺–Co²⁺. Установлено, что частичное замещение в гексаферрите стронция SrFe₁₂O₁₉ ионов Sr²⁺ ионами La³⁺ и ионов Fe³⁺ ионами Co²⁺ помогает достижению высоких магнитных свойств постоянных магнитов [1].

Ионы Cu^{2+} имеют ионный радиус, близкий к ионному радиусу Co^{2+} , и такую же способность к замещению, поэтому возникает интерес к возможности практического использования меди, более дешевой по сравнению с кобальтом, для получения гексагональных ферритов, соответствующих составам $Sr_{1-x}La_xFe_{12-x}Cu_xO_{19}$, пригодных для изготовления постоянных магнитов с высокими магнитными свойствами.

В данной работе керамическим методом проведен синтез образцов гексаферритов $Sr_{1-x}La_xFe_{12-x}Cu_xO_{19}$ (x = 0; 0, 1; 0, 2; 0, 3; 0, 4; 0, 5), исследованы их кристаллоструктурные и магнитные свойства. Авторами [1] получение гексаферритов $Sr_{1-x}La_xFe_{12-x}Cu_xO_{19}$ проводилось методом самораспространяющегося высокотемпературного синтеза, позволяющим получать образцы с размерами частиц менее 1 мкм. Это свидетельствует об актуальности изучения указанных материалов, а также позволяет сопоставить особенности свойств образцов, полученных различными методами.

Методика эксперимента. Образцы ферритов Sr_{1-x}La_xFe_{12-x}Cu_xO₁₉ (x = 0; 0,1; 0,2; 0,3; 0,4; 0,5) синтезировали твердофазным методом из оксидов лантана (La₂O₃), железа (Fe₂O₃), меди (CuO), карбоната стронция (SrCO₃) по керамической технологии. Все реактивы имели квалификацию ч.д.а. Оксид лантана перед взвешиванием прокаливали для удаления воды при 1273 К в течение 3 ч. Перемешивание и помол исходных соединений, взятых в необходимом молярном соотношении, проводили в планетарной мельнице с добавлением этанола. Полученную шихту (с добавлением этанола) прессовали под давлением 50–75 МПа в таблетки диаметром 19 мм и высотой 5–7 мм, которые затем сушили на воздухе при 373 К и обжигали на подложках из оксида алюминия при температуре 1473 К на воздухе в течение 8 ч.

Рентгеновские дифрактограммы образцов ферритов получены на дифрактометре Bruker D8 (излучение CuK_α) при комнатной температуре. Параметры элементарной ячейки *a*, *c* гексагональной структуры магнетоплюмбита рассчитывали с помощью полнопрофильного анализа по методу Ритвельда (вычислительная программа FullProf). Инфракрасные спектры синтезированных образцов в интервале частот 300–1500 см⁻¹ записывались в таблетированных смесях с KBr (х.ч.) на приборе Thermo Nicolet. Масса ферритов в таблетке составляла 0,001 г.

Для изучения микроструктуры твердых растворов ферритов $Sr_{1-x}La_xFe_{12-x}Cu_xO_{19}$ и изотропных магнитов, изготовленных из них, использовали снимки образцов на сканирующем электронном микроскопе JSM-5610 LV (с увеличением в 100, 500, 1000, 2000, 5000 раз).

Проведено определение магнитных характеристик твердых растворов ферритов $Sr_{1-x}La_xFe_{12-x}Cu_xO_{19}$ (x = 0; 0,1; 0,2; 0,3; 0,4; 0,5) и изотропных постоянных магнитов, изготовленных из синтезированных ферритов. Намагниченность насыщения (σ_s , n_s) и параметры петли гистерезиса (σ_r , ${}_{\sigma}H_c$) намагниченности образцов ферритов измеряли вибрационным методом на универсальной высокополевой измерительной системе (Cryogenic Lid London, 41S) при температурах 6 и 308 К в магнитных полях до 14 Тл. Остаточную индукцию (B_r), коэрцитивную силу (${}_{b}H_c$) и энергетическое произведение ((BH)_{max}) образцов изотропных постоянных магнитов определяли индукционным методом на установке УИ-200-М. Образцы магнитов имели форму цилиндров диаметром ~10 мм и длиной ~10 мм.

Экспериментальные результаты исследования гексаферритов и их обсуждение. Во всех полученных образцах ферритов $Sr_{1-x}La_xFe_{12-x}Cu_xO_{19}$, как показывают рентгенограммы (рис. 1), присутствует только магнетоплюмбитная фаза (SrM), то есть ионы Cu^{2+} , La^{3+} входят в магнетоплюмбитную решетку и никакие другие кристаллические структуры, их содержащие, не образуются. Вместе с тем, в образцах ферритов со степенями замещения *x*, равными 0,2 и 0,3 (рис. 1, кривые 3 и 4), интенсивности пиков (008) и (107) отличаются от литературных данных для стронциевого феррита $SrFe_{12}O_{19}$ и полученных данных для образца с x = 0 (рис. 1, кривая *I*).

Рис. 1. Рентгенограммы образцов Sr_{1-x}La_xFe_{12-x}Cu_xO₁₉ со степенями замещения x: l - 0; 2 - 0,1; 3 - 0,2; 4 - 0,3; 5 - 0,4; 6 - 0,5

Это может быть связано со степенью текстурирования образцов, то есть ориентированного расположения кристаллитов. Обычно при получении анизотропных постоянных магнитов образцы прессуют в магнитном поле. При этом большинство кристаллитов ориентируется по направлению магнитного поля. В процессе спекания такое упорядоченное расположение кристаллитов не разрушается, а наоборот увеличивается. При снятии рентгенограммы анизотропного образца с поверхности, перпендикулярной направлению магнитного поля при прессовании, установили, что наличие текстуры приводит к увеличению интенсивности рентгеновского рефлекса (008) и уменьшению рентгеновского рефлекса (107). Степень текстурирования обычно определяют по соотношению интенсивностей рентгеновских рефлексов (107) и (008) для текстурированного образца по сравнению с порошком феррита с изотропным расположением кристаллитов. Следовательно, можно предположить, что аномальное соотношение интенсивности рефлексов (107) и (008) вызвано появлением частично упорядоченного расположения кристаллитов при набивании порошка феррита в кювету для снятия рентгенограмм.

Таким образом, сопоставление рентгенограмм образцов Sr_{1-x}La_xFe_{12-x}Cu_xO₁₉ с различными значениями х (рис. 1) показало наличие текстуры в образцах с x = 0,1; 0,2; 0,3, причем для образцов с x = 0,2 и x = 0,3 степень текстурирования выше, чем у образца с x = 0,1. Образцы с x = 0,4 и x = 0,1 также, как и незамещенный стронциевый феррит (образец с x = 0), являются изотропными. С целью подтверждения наведенной анизотропии рентгенограммы для образцов с x = 0,3 и x = 0,2 снимались дважды. При повторном исследовании проводилось дополнительное измельчение порошка. Вид рентгенограмм при этом и соотношение интенсивностей рентгеновских рефлексов (107) и (008) не изменялся.

В табл. 1 приведены основные характеристики гексагональной кристаллической ре-

шетки образцов синтезированных ферритов Sr_{1-r}La_rFe_{12-r}Cu_rO₁₉. Объем элементарной ячейки исследуемых систем рассчитан по формуле $V = 0,866025a^2c$, где a, c – параметры кристаллической решетки. Рентгеноструктурная плотность однофазных образцов ферритов исследуемых твердых растворов $\rho_{\text{рент}}$ рассчитана по формуле $\rho_{\text{pehr}} = 2M / (N_A V)$, где M – молярная масса феррита, N_A – число Авогадро. Для синтезированного в данной работе феррита SrFe₁₂O₁₉ значения параметров решетки а и с соответственно равны 5,8870 Å и 23,027 Å; объем элементарной решетки V = 691,12 Å³ и рентгеноструктурная плотность $\rho_{\text{peht}} = 5,102 \text{ г/см}^3$. Эти значения хорошо согласуются с литературными данными (a = 5,8844 Å, c = 23,05(3) Å, $V = 691,20 \text{ Å}^3, \rho_{\text{peht}} = 5,102 \text{ г/cm}^3) [2].$

С увеличением *х* параметр кристаллической решетки *а* не претерпевает сильного изменения (табл 1, рис. 2). Некоторое уменьшение величины параметра кристаллической решетки *а* при увеличении *х* может происходить из-за меньшего радиуса ионов La³⁺ (1,22 Å) по сравнению с ионами Sr²⁺ (1,27 Å) [1]. Параметр кристаллической решетки *с* при увеличении *х* растет заметнее (табл. 1, рис. 2). Для образца с x = 0,5 он равен 23,065 Å по сравнению с 23,027 Å для образца с x = 0.

В кристаллической решетке $Sr_{1-x}La_xFe_{12-x}Cu_xO_{19}$ при увеличении х из-за меньшего радиуса ионов La³⁺ (1,22 Å) по сравнению с ионами Sr^{2+} (1,27 Å), вероятно, происходит уменьшение параметра кристаллической решетки с, но практически одновременно имеет место и возрастание этого параметра из-за того, что ионы Cu^{2+} , имеющие больший радиуса (0,78 Å) по сравнению с ионами Fe³⁺ (0,67 Å), входят в SrM-решетку и заменяют в ней ионы Fe³⁺. Увеличение параметра кристаллической решетки с с ростом х подразумевает, что вклад влияния замещений на ионы Cu²⁺ на увеличение размера параметра кристаллической решетки с превышает противоположное влияние замещения ионов Sr^{2+} ионами La³⁺. Изменение параметров решетки особенно заметно до x = 0,3.

Таблица 1

Параметры кристаллической решетки *a* и *c*, объем элементарной ячейки *V*, рентгеноструктурная плотность ρ_{pent}, молярная масса образцов ферритов Sr_{1-x}La_xFe_{12-x}Cu_xO₁₉

x	<i>a</i> (Å)	<i>c</i> (Å)	c/a	$V(\text{\AA}^3)$	$ρ_{\text{peht}}(\Gamma/\text{cm}^3)$	М (г/моль)
0,0	5,8870	23,027	3,9115	691,12	5,102	1061,77
0,1	5,8862	23,039	3,9140	691,28	5,129	1067,67
0,2	5,8853	23,050	3,9165	691,42	5,157	1073,57
0,3	5,8845	23,061	3,9190	691,56	5,184	1079,47
0,4	5,8841	23,064	3,9198	691,58	5,212	1085,37
0,5	5,8841	23,065	3,9199	691,58	5,241	1091,27

Рис. 2. Зависимость параметров гексагональной кристаллической решетки *a* и *c* (*a*) и объема элементарной решетки $V(\delta)$ от степени замещения *x* в ферритах $Sr_{1-x}La_xFe_{12-x}Cu_xO_{19}$

При $x \le 0,3$ объем элементарной ячейки *V* и рентгеноструктурная плотность $\rho_{\text{рент}}$ твердых растворов ферритов систем $\text{Sr}_{1-x}\text{La}_x\text{Fe}_{12-x}\text{Cu}_x\text{O}_{19}$ с ростом *x* увеличиваются линейно, затем при x = 0,4-0,5 это увеличение замедляется. Возможно, что в исследуемой системе значение степени замещения x = 0,3 является предельной для образования твердых растворов ферритов $\text{Sr}_{1-x}\text{La}_x\text{Fe}_{12-x}\text{Cu}_x\text{O}_{19}$.

Сравнение ИК-спектров образцов гексаферритов с различными степенями замещения xпоказывает, что в исследуемом интервале волновых чисел 300–750 см⁻¹ все они схожи между собой (рис. 3).

Частичное гетеровалентное замещение ионов Sr^{2^+} ионами La^{3^+} и эквивалентного количества ионов Fe^{3^+} ионами Cu^{2^+} в гексаферрите

SrFe₁₂O₁₉ не приводит к существенному изменению частот и интенсивностей спектральных полос поглощения. С возрастанием х наблюдается очень незначительное плавное возрастание частоты деформационных колебаний: для феррита SrFe₁₂ \hat{O}_{19} от 397 до 407 см⁻¹ (для $x = \hat{0}, \hat{5}$). Интенсивность этой полосы с ростом х несколько снижается. Частоты поглощения при 554 (552) cM^{-1} , 448 (452) cM^{-1} , 362 cM^{-1} , 336 (337) см⁻¹, которые соответствуют полосам поглощения валентных и деформационных колебаний феррита SrFe₁₂O₁₉, и их интенсивности при увеличении степени замещения х от 0 до 0,5 почти не изменяются. Таким образом, результаты ИК-спектроскопии свидетельствуют об однородность фазовых составов синтезированных образцов.

Рис. 3. ИК-спектры образцов $Sr_{1-x}La_xFe_{12-x}Cu_xO_{19}$ со степенями замещения *x*: 1-0; 2-0,1; 3-0,2; 4-0,3; 5-0,4; 6-0,5

Измерения удельной намагниченности образцов ферритов проводили вибрационным методом при температурах 6 и 300 К в магнитных полях до 14 Тл. Образцы ферритов имели форму цилиндров длиной 5,0–5,4 мм и диаметром 1,0–1,2 мм. По полученным петлям гистерезиса определяли удельную намагниченность насыщения σ_s и коэрцитивную силу $_{\sigma}H_c$. Намагниченность насыщения, выраженная в магнетонах Бора (μ_B) на одну формульную единицу феррита, рассчитывали по формуле

$$n_{\rm s} = (\sigma_{\rm s} \cdot M) / 5585$$

где M – молярная масса соответствующего феррита; 5585 – величина, равная произведению магнетона Бора (μ_B) на число Авогадро. Результаты исследования магнитных свойств (намагниченности насыщения одной формульной единицы n_s , удельной намагниченности насыщения σ_s , коэрцитивной силы ${}_{\sigma}H_c$, остаточной намагниченности σ_r , коэффициента прямоугольности петли гистерезиса K) полученных ферритов Sr_{1-x}La_xFe_{12-x}Cu_xO₁₉ представлены на рис. 4 и 5 и в табл. 2 и 3.

В соответствии с полученными данными возрастание степени замещения *х* приводит к

увеличению намагниченности насыщения n_s при 6 К от величины 19,91 μ_B для SrFe₁₂O₁₉ до 20,69 μ_B для x = 0,3 (табл. 2). При 300 К намагниченность насыщения n_s увеличивается от величины 15,72 μ_B для SrFe₁₂O₁₉ до 16,25 μ_B для x = 0,3 (табл. 3). При дальнейшем увеличении x намагниченность n_s уменьшается как при 6 К, так и при 300 К.

В соответствии с двухполярной моделью Гортера [3] намагниченность феррита стронция SrFe₁₂O₁₉ равняется разности магнитных моментов *B*-подрешетки, в которой расположены восемь ионов Fe³⁺, и *A*-подрешетки с четырьмя ионами Fe³⁺. Магнитный момент ионов Fe³⁺ в магнетонах Бора равен 5 μ_B , магнитный момент ионов Cu²⁺ равен 1 μ_B .

Таблица 2

	-				• •	
x	$σ_{s y β}$, Γc·cm ³ /г	$n_s, \mu_{\rm B}$	$_{\sigma}H_{c}, \Im$	$σ_r$, $\Gamma c \cdot c M^3$	$σ_{ryd}$, Γс·см ³ /г	$K = \sigma_r / \sigma_s$
0,0	104,73	19,91	2110	3,824	63,18	0,6033
0,1	105,72	20,21	1500	4,244	65,76	0,6221
0,2	106,33	20,44	1110	4,311	70,38	0,6618
0,3	107,05	20,69	1090	4,412	70,99	0,6632
0,4	98,95	19,23	1410	3,465	56,71	0,5731
0,5	97,91	19,13	1400	3,337	56,41	0,5762

Характеристики магнитных свойств ферритов Sr_{1-x}La_xFe_{12-x}Cu_xO₁₉ с различными степенями замещения *x* при температуре 6 К

I uOJIIII u J	Таблица	3
---------------	---------	---

x	$\sigma_{s y z}$, Гс·см ³ /г	$n_s, \mu_{\rm B}$	₀Н₀, Э	$σ_r$, Γс·см ³	$σ_{r y g}$, Γε·εм ³ /г	$K = \sigma_r / \sigma_s$
0,0	82,69	15,72	3010	45,89	8,724	0,5550
0,1	83,38	15,94	2200	52,37	10,012	0,6281
0,2	84,22	16,19	2010	57,34	11,022	0,6808
0,3	84,07	16,25	1900	57,43	11,101	0,6831
0,4	78,27	15,21	2440	47,09	9,151	0,6016
0,5	77,38	15,12	2360	46,43	9,072	0,6000

Характеристики магнитных свойств ферритов Sr_{1-x}La_xFe_{12-x}Cu_xO₁₉ с различными степенями замещения *x* при температуре 300 К

Если предположить, что для феррита $Sr_{1-x}La_xFe_{12-x}Cu_xO_{19}$ с x = 0,3 все ионы Cu^{2+} расположены в *А*-подрешетке антипараллельно ионам Fe³⁺ этой подрешетки, то намагниченность одной формульной единицы в магнетонах Бора будет равна $n_s = (8 \cdot 5) - (3, 7 \cdot 5 - 0, 3 \cdot 1) =$ = 21,8. Величина в первых скобках относится к магнитному моменту ионов Fe^{3+} в *B*-подрешетке. Величина во вторых скобках относится к ионам Fe^{3+} и ионам Cu^{2+} в *А*-подрешетке. Для стронциевого феррита SrFeO₁₉ намагниченность одной формульной единицы в магнетонах Бора равна $n_s = (8 \cdot 5) - (4 \cdot 5) = 20$. Таким образом, намагниченность для феррита $Sr_{1-x}La_xFe_{12-x}Cu_xO_{19}$ с x = 0,3 по сравнению со стронциевым ферритом SrFeO₁₉ выше на величину $\Delta n_s = 1.8 \ \mu_{\rm B}$.

Если предположить, что для феррита $Sr_{1-x}La_xFe_{12-x}Cu_xO_{19}$ с x = 0,3 все ионы Cu^{2+} расположены в *А*-подрешетке параллельно ионам Fe^{3+} этой подрешетки, то намагниченность одной формульной единицы в магнетонах Бора будет равна $n_s = (8 \cdot 5) - (3,7 \cdot 5 + 0,3 \cdot 1) = 21,2$. Следовательно, при этом предположении намагниченность феррита $Sr_{1-x}La_xFe_{12-x}Cu_xO_{19}$ с x = 0,3 по сравнению со стронциевым ферритом SrFeO₁₉ выше на величину $\Delta n_s = 1,2 \mu_B$.

Если предположить, что для феррита $Sr_{1-x}La_xFe_{12-x}Cu_xO_{19}$ с x = 0,3 65% ионов Cu²⁺ расположены в *A*-подрешетке, а 35% ионов Cu²⁺ расположены в *B*-подрешетке, тогда намагниченность одной формульной единицы в магнетонах Бора будет равна $n_s = (7,895 \cdot 5 + 0,105 \cdot 1) - (3,805 \cdot 5 - 0,195 \cdot 1) = 20,75$. Таким образом, при этом предположении намагниченность феррита $Sr_{1-x}La_xFe_{12-x}Cu_xO_{19}$ с x = 0,3по сравнению со стронциевым ферритом SrFeO₁₉ выше на величину $\Delta n_s = 0,75 \mu_B$.

Для феррита Sr_{1-x}La_xFe_{12-x}Cu_xO₁₉ с x = 0,3 в соответствии с табл. 4 при температуре 6 К экспериментальная величина $\Delta n_s = 0,78 \ \mu_B$. Близость этого значения к приведенному выше значению $\Delta n_s = 0,75 \ \mu_B$ позволяет предположить, что в феррите Sr_{1-x}La_xFe_{12-x}Cu_xO₁₉ с x = 0,3 реализуется рассмотренное выше распределение ионов Cu²⁺ по подрешеткам: 65% ионов Cu²⁺ расположены в *A*-подрешетке, а 35% ионов Cu²⁺ расположены в *B*-подрешетке.

Коэрцитивная сила ($_{\sigma}H_c$) для образцов ферритов Sr_{1-x}La_xFe_{12-x}Cu_xO₁₉ со значениями *x* от 0 до 0,3 плавно снижается от 3010 до 1900 Э при 300 К и от 2110 до 1090 Э при 6 К (табл. 2, 3). При значениях *x* 0,4 и 0,5 наблюдается некоторое повышение коэрцитивной силы как при 6 К, так и при 300 К.

Таблица 4

Магнитные характеристики изотропных постоянных магнитов из ферритов Sr_{1-x}La_xFe_{12-x}Cu_xO₁₉

Степень замещения <i>х</i>	Остаточная индукция <i>B_r</i> (Тл)	Коэрцитивная сила (по индукции) _b H _c (кА/м)	Энергетическое произ- ведение <i>BH</i> _{max} (кДж/м ³)	Пористость образцов (%)
0,0	0,18	96	4,81	5,53
0,1	0,21	80	4,65	14,02
0,2	0,26	76	4,73	18,70
0,3	0,33	69	4,78	20,14

Получение изотропных постоянных магнитов из синтезированных ферритов Sr_{1-x}La_xFe_{12-x}Cu_xO₁₉ и определение их магнитных характеристик. На основе полученных ферритов были изготовлены изотропные постоянные магниты. С использованием специальной промышленной добавки в образцы вводили CaCO₃, SiO₂, H₃BO₃ соответственно в количествах 0,1; 0,25 и 0,3 массовых процентов по отношению к исходным массам ферритов, а 0,75 массовых процента добавки также $SrFe_{9.5}Al_{2.5}O_{19}$, разработанной на кафедре физической и коллоидной химии БГТУ. Образцы изотропных магнитов имели форму цилиндров диаметром ~10 мм и длиной ~10 мм. Их обжигали на воздухе при 1433 К в течение 2 ч. Магнитные характеристики постоянных изотропных магнитов, полученные индукционным методом, представлены в табл. 4.

Более низкие значения коэрцитивной силы ${}_{b}H_{c}$ и максимального энергетического произведения (*BH*)_{тах}, полученные в данной работе по сравнению с приведенными в работе [1], в которой для получения ферритов использовался метод СВС, возможно, связаны с морфологическими различиями как синтезированных ферритов, так и полученных магнитов. Именно хорошей плоскоподобной морфологией и маленькими размерами частиц авторы [1] объясняют наблюдаемую ими высокую величину коэрцитивной силы H_c для образца Sr_{1-x}La_xFe_{12-x}Cu_xO₁₉ с x = 0,1.

Пористость образцов определяли по формуле

$$K_n = \frac{\rho_{\text{pehr}} - \rho_{\text{каж}}}{\rho_{\text{pehr}}} 100\%, \qquad (1)$$

где $\rho_{\text{каж}}$ – плотность образцов изотропных магнитов, рассчитываемая по массе образца и по его объему, $\rho_{\text{рент}}$ – рентгеноструктурная плотность соответствующих образцов ферритов.

С ростом х наблюдалось увеличение пористости образцов (табл. 4), что указывает на менее интенсивное спекание при получении магнитов, связанное, вероятно, с крупными размерами частиц исходных порошков ферритов $Sr_{1-x}La_xFe_{12-x}Cu_xO_{19}$ (x = 0,1; 0,2; 0,3), использовавшихся для прессовки цилиндрической формы образцов постоянных магнитов. Снимки полученных образцов ферритов и изготовленных из них магнитов, сделанные при увеличении 2000 раз с использованием сканирующего электронного микроскопа JSM-5610 LV, представлены на рис. 6, 7. Для гексаферрита стронция $SrFe_{12}O_{19}$ (x = 0) характерны наименьшие размеры частиц (рис. 6, а и рис. 7, а). Введение добавок меди и лантана в количествах, соответствующих степеням замещения x, равным 0,1; 0,2; 0,3, приводило к увеличению размеров частиц. Вероятно, для улучшения магнитных характеристик ферритов $Sr_{1-x}La_xFe_{12-x}Cu_xO_{19}$ необходимо подбирать условия спекания магнитов, приводящие к уменьшению размеров частиц, например, снижать температуру и длительность обжига.

Рис. 6. Электронные фотографии (увеличение в 2000 раз) образцов ферритов $Sr_{1-x}La_xFe_{12-x}Cu_xO_{19}$ при различных степенях замещения *x*: a - x = 0; $\delta - x = 0,1$; e - x = 0,2; e - x = 0,3; $\partial - x = 0,4$; e - x = 0,5

Рис. 7. Электронные фотографии (увеличение в 2000 раз) образцов изотропных магнитов, изготовленных из ферритов $Sr_{1-x}La_xFe_{12-x}Cu_xO_{19}$ при степенях замещения *x*: a - x = 0; $\delta - x = 0,1$; e - x = 0,2; c - x = 0,3

Заключение. Керамическим методом синтезированы образцы ферритов $Sr_{1-x}La_xFe_{12-x}Cu_xO_{19}$ (x = 0; 0,1; 0,2; 0,3; 0,4; 0,5). Установлено, что условия синтеза обеспечивали получение однофазных образцов со структурой магнетоплюмбита. Определены параметры кристаллической решетки и проанализирована зависимость этих параметров от степени замещения ионов Fe^{3+} в гексаферрите SrFe₁₂O₁₉ ионами Cu²⁺ и La³⁺. Установлено, что для ферритов со степенями замещения *x*, равными 0,2 и 0,3, наблюдается текстурирование образцов.

Определение магнитных параметров синтезированных ферритов при температуре 6 К показало, что при повышении степени замещения x от 0 до 0,3 намагниченность насыщения формульной единицы в магнетонах Бора плавно возрастает от 19,91 до 20,69, а коэрцитивная сила снижается от 2110 до 1090 Э.

Для феррита $Sr_{1-x}La_xFe_{12-x}Cu_xO_{19}$ с x = 0,3теоретический анализ распределения ионов Cu^{2+} по магнитоплюмбитным подрешеткам в сочетании с экспериментальными данными по намагниченности позволил предположить, что 65% ионов Cu^{2+} располагаются в *A*-подрешетке и 35% ионов Cu^{2+} – в *B*-подрешетке.

Для образцов изотропных постоянных магнитов, изготовленных из ферритов со степенями замещения x 0,1; 0,2; 0,3, коэрцитивная сила $_{b}H_{c}$ равна соответственно 80, 76, 69 кА/м, что ниже коэрцитивной силы 96 кА/м для магнита, изготовленного из гексаферрита $SrFe_{12}O_{19}$. Низкие значения коэрцитивной силы ${}_{b}H_{c}$, возможно, связаны с крупными размерами частиц порошков ферритов, использовавшихся для прессовки образцов. Для улучшения магнитных характеристик необходимо подбирать условия спекания магнитов, приводящие к снижению рекристаллизации частиц, например, снижать температуру и длительность обжига.

Литература

1. Qiao, L. The magnetic properties of strontium hexaferrites with La-Cu substitution prepared by SHS method / L. Qiao [et al.] // J. of Magnetism and Magnetic Materials. 2007. – Vol. 318. – P. 74–78.

2. JCDD JCPDS № 84-1531 (рентгеновская карточка).

3. Гортер, Е. В. Намагниченность насыщения и кристаллохимия ферримагнитных окислов / Е. В. Гортер // УФН. – 1955. – Т. 57, № 2. – С. 279–346.

Поступила 26.02.2011