УДК 537.622.4

Д. Д. Полыко, инженер (БарГУ);

Л. А. Башкиров, доктор химических наук, профессор (БГТУ);

С. В. Труханов, кандидат физико-математических наук,

старший научный сотрудник (НПЦ НАН Беларуси по материаловедению);

Л. С. Лобановский, кандидат физико-математических наук,

старший научный сотрудник (НПЦ НАН Беларуси по материаловедению)

МАГНИТНЫЕ СВОЙСТВА ТВЕРДЫХ РАСТВОРОВ ВЫСОКОКОЭРЦИТИВНЫХ ФЕРРИТОВ Sr_{1-x}Pr_xFe_{12-x}Me_xO₁₉, Sr_{1-x}Nd_xFe_{12-x}Me_xO₁₉ (Me – Zn, Co, Mn)

Петли гистерезиса ферритов $Sr_{1-x}Pr_xFe_{12-x}Me_xO_{19}$, $Sr_{1-x}Nd_xFe_{12-x}Me_xO_{19}$ (Me – Zn, Co, Mn) ($x \le 0,5$) получены при температурах 6 и 300 K в магнитных полях до 14 T. Изучена зависимость намагниченности насыщения и коэрцитивной силы от *x* при 6 и 300 K. Изготовлены изотропные керамические постоянные магниты на основе ферритов $Sr_{1-x}Pr_xFe_{12-x}Me_xO_{19}$, $Sr_{1-x}Nd_xFe_{12-x}Me_xO_{19}$ (Me – Co, Mn) ($x \le 0,3$) и исследованы их магнитные характеристики.

Hysteresis loops of $Sr_{1-x}Pr_xFe_{12-x}Me_xO_{19}$, $Sr_{1-x}Nd_xFe_{12-x}Me_xO_{19}$ (Me – Zn, Co, Mn) ($x \le 0,5$) are obtained at the temperatures 6 and 300 K in the magnetic fields up to 14 T. Dependence of saturation magnetization and coercive force, on x is studied at 6 and 300 K. Isotropic ceramic permanent magnets on the base of $Sr_{1-x}Pr_xFe_{12-x}Me_xO_{19}$, $Sr_{1-x}Nd_xFe_{12-x}Me_xO_{19}$ (Me – Co, Mn) ($x \le 0,3$) ferrites are prepared and their magnetic characteristics are investigated.

Введение. С 90-х годов ХХ века и до настоящего времени перспективным направлением поиска новых магнитотвердых материалов является изучение твердых растворов на основе SrFe₁₂O₁₉ состава Sr_{1-x}Ln_xFe_{12-x}M_xO₁₉ (где Ln – La, Nd, Pr, Sm и др. редкоземельные элементы, M – Zn, Co, Mn, Ni, Cu и др.), в которых катионы Sr²⁺ частично замещены ионами редкоземельного элемента Ln³⁺, а эквивалентное количество Fe³⁺ замещено катионами M²⁺. Так, в работе [1] установлено, что для твердых растворов Sr_{1-x}La_xFe_{12-x}Zn_xO₁₉ увеличение степени замещения х до 0,3 приводит к возрастанию намагниченности и незначительному уменьшению поля анизотропии. Анизотропный постоянный магнит из феррита Sr_{0.7}La_{0.3}Fe_{11.7}Zn_{0.3}O₁₉ имеет величину энергетического произведения (*BH*)_{max}, равную 41 кДж/м³, что значительно больше, чем у анизотропных магнитов из феррита SrFe₁₂O₁₉ ((*BH*)_{max} = 35 кДж/м³). В работе [2] установлено, что для ферритов системы Sr_{1-x}La_xFe_{12-x}Co_xO₁₉ частичное замещение ионов стронция Sr^{2+} ионами La^{3+} и ионов Fe^{3+} ионами Co^{2+} до x = 0,2 приводит к увеличению поля анизотропии и, следовательно, росту коэрцитивной силы, в значительной степени определяющей энергетическое произведение (BH)_{max} постоянных магнитов, что позволило во Франции освоить производство постоянных магнитов из твердого раствора Sr_{0.8}La_{0.2}Fe_{11.8}Co_{0.2}O₁₉ со значением энергетического произведения $(BH)_{\text{max}} = 38,4 \text{ кДж/м}^3.$

В последние годы опубликован ряд работ, в которых исследованы кристаллическая структура, спектры Мессбауэра и в меньшей степени магнитные свойства ферритов систем $Sr_{1-x}Ln_xFe_{12-x}^{3+}Fe_x^{2+}O_{19}$, $Sr_{1-x}Ln_xFe_{12-x}Co_xO_{19}$ (Ln – Pr, Nd) [3–5].

Целью настоящей работы является изучение намагниченности насыщения, коэрцитивной силы ферритов $Sr_{1-x}Ln_xFe_{12-x}Me_xO_{19}$ (Ln – Nd, Pr; Me – Zn, Co, Mn) и характеристик изотропных керамических постоянных магнитов на их основе.

Методика эксперимента. Керамические образцы ферритов систем Sr_{1-x}Ln_xFe_{12-x}Me_xO₁₉, (Ln - Nd, Pr; Me - Zn, Co, Mn) (x = 0; 0,1; 0,2; 0,3; 0,4; 0,5) синтезированы твердофазным методом из оксидов празеодима (Pr₆O₁₁), неодима (Nd₂O₃), железа (Fe₂O₃), кобальта (Co₃O₄) и карбоната стронция. Все реактивы имели квалификацию ч.д.а. Перемешивание и помол исходных соединений, взятых в необходимом соотношении, проводили в планетарной мельнице «Puluerizette 6» фирмы Fritsch с добавлением этанола. Полученную шихту (с добавлением этанола для улучшения прессуемости) прессовали под давлением 50-75 МПа в таблетки диаметром 19 и высотой 5-7 мм, которые затем сушили на воздухе при 373 К и обжигали на подложках из оксида алюминия при температуре 1473 К на воздухе в течение 8 ч. После предварительного обжига таблетки дробили, мололи, прессовали и обжигали при 1473 К в течение 8 ч. Образцы, используемые для изготовления изотропных постоянных магнитов, снова мололи.

На основе полученных порошков ферритов $Sr_{1-x}Ln_xFe_{12-x}M_xO_{19}$ (M – Zn, Co, Mn; Ln – Nd, Pr) (x = 0; 0,1; 0,2; 0,3) были изготовлены две партии изотропных постоянных магнитов. Образцы первой партии содержали только широко используемую комплексную добавку (1%)

СаСО₃, 0,25% SiO₂, 0,3% H₃BO₃ от массы Sr_{1-x}Ln_xFe_{12-x}M_xO₁₉), в другую, кроме этой добавки, вносилась также 0,75% добавка порошка SrFe_{9,5}Al_{2,5}O₁₉. Образцы в форме цилиндра (d = 13 мм, h = 10 мм) обжигались на воздухе при 1433 К в течение 2 ч. Для сравнения, были изготовлены аналогичные постоянные магниты на основе Sr_{1-x}La_xFe_{12-x}Co_xO₁₉.

Намагниченность насыщения и параметры петли гистерезиса намагниченности образцов ферритов цилиндрической формы длинной 5,0– 5,4 мм и диаметром 1,0–1,2 мм были измерены вибрационным методом при температурах 6 и 300 К в магнитном поле до 14 Т на универсальной высокополевой измерительной системе (Cryogenic Ltd, London, 41S) Института физики твердого тела и полупроводников «Научно-практического центра НАН Беларуси по материаловедению». Магнитные характеристики постоянных изотропных магнитов определены индукционно-импульсным методом на установке УИ-200-М

Результаты и их обсуждение. Рентгенофазовый анализ исследуемых систем показал, что при $x \le 0,3$ образцы были однофазными, а при $x \ge 0,4$ содержали фазы α -Fe₂O₃ и ферритов со структурой шпинели. Измерения удельной намагниченности σ при 6 и 300 К в магнитных полях до 14 Т, показывают, что намагниченность насыщения исследуемых ферритов достигается в поле около 3 Т, выше которого наблюдается небольшое безгистерезисное возрастание намагниченности. По петлям гистерезиса определяли удельную намагниченность насыщения σ_s и коэрцитивную силу $_{\sigma}H_c$. Для однофазных образцов рассчитана намагниченность насыщения n_s , в магнетонах Бора (μ_B) на одну формульную единицу феррита по формуле

$$n_s = \frac{\sigma_s \cdot M}{5585}, \qquad (1)$$

где *М* – молярная масса соответствующего феррита; 5585 – величина, равная произведению магнетона Бора (µ_B) на число Авогадро. Магнитные свойства исследуемых ферритов представлены в табл. 1 и на рис. 1.

Таблица 1

Намагниченность насыщения формульной единицы (n _s)	
и коэрцитивная сила ($_{\sigma}H_{c}$) исследованных ферритов при температурах	6 и 300 К

	T =	6 К	T = 300 K					
Состав	<i>n</i> II _D	- <i>H</i> Э		_H Э				
$\frac{n_s, \mu_B}{Sr. Pr Fe_{s2}} \subset O_{1s2} \qquad \qquad n_s, \mu_B \qquad \frac{\sigma_{1c}, \sigma_{1c}}{\sigma_{1c}, \sigma_{1c}}$								
SrFe ₁₂ O ₁₀	19.79	2700	15.79	3700				
$Sr_{0.9}Pr_{0.1}Fe_{11.9}Co_{0.1}O_{19}$	20,16	3090	16.23	4240				
$Sr_{0.8}Pr_{0.2}Fe_{11.8}Co_{0.2}O_{1.9}$	20.31	3200	16.31	4320				
$\frac{1}{3} \frac{1}{3} \frac{1}$	20,10	2990	15,20	4120				
	$Sr_{1-x}Nd_xFe_{12-x}$	Co_xO_{19}		•				
SrFe ₁₂ O ₁₉	19,77	2012	13,80	3022				
$Sr_{0,9}Nd_{0,1}Fe_{11,9}Co_{0,1}O_{19}$	19,90	2542	15,09	3598				
Sr _{0.8} Nd _{0.2} Fe _{11.8} Co _{0.2} O ₁₉	19,43	3021	15,20	4560				
Sr _{0,7} Nd _{0,3} Fe _{11,7} Co _{0,3} O ₁₉	19,10	2407	14,57	4239				
	$Sr_{1-x}Pr_xFe_{12-x}N$	Mn_xO_{19}						
$SrFe_{12}O_{19}$	19,96	2730	15,81	3750				
$Sr_{0.9}Pr_{0.1}Fe_{11.9}Mn_{0.1}O_{19}$	20,58	3120	16,24	4430				
$Sr_{0.8}Pr_{0.2}Fe_{11.8}Mn_{0.2}O_{19}$	21,11	3520	16,92	4900				
$Sr_{0,7}Pr_{0,3}Fe_{11,7}Mn_{0,3}O_{19}$	20,85	3310	16,41	4610				
	$Sr_{1-x}Nd_xFe_{12-x}Mn_xO_{19}$							
$SrFe_{12}O_{19}$	19,90	2710	15,78	3720				
$Sr_{0,9}Nd_{0,1}Fe_{11,9}Mn_{0,1}O_{19}$	20,48	2910	16,01	3880				
$Sr_{0.8}Nd_{0.2}Fe_{11.8}Mn_{0.2}O_{19}$	20,93	3380	16,34	4190				
$Sr_{0,7}Nd_{0,3}Fe_{11,7}Mn_{0,3}O_{19}$	20,75	3210	16,12	3870				
$\mathrm{Sr}_{1-x}\mathrm{Pr}_{x}\mathrm{Fe}_{12-x}\mathrm{Zn}_{x}\mathrm{O}_{19}$								
$SrFe_{12}O_{19}$	19,60	2060	13,84	3180				
$Sr_{0.9}Pr_{0.1}Fe_{11.9}Zn_{0.1}O_{19}$	19,94	2340	15,94	3220				
$Sr_{0,8}Pr_{0,2}Fe_{11,8}Zn_{0,2}O_{19}$	19,41	2720	14,89	3450				
$Sr_{0,7}Pr_{0,3}Fe_{11,7}Zn_{0,3}O_{19}$	19,12	2390	13,36	3270				
$Sr_{1-x}Nd_xFe_{12-x}Zn_xO_{19}$								
SrFe ₁₂ O ₁₉	19,67	2010	13,37	3070				
$Sr_{0.9}Nd_{0.1}Fe_{11.9}Zn_{0.1}O_{19}$	19,68	2080	13,60	3150				
$Sr_{0.8}Nd_{0.2}Fe_{11.8}Zn_{0.2}O_{19}$	19,65	2010	13,94	3110				
Sr _{0,7} Nd _{0,3} Fe _{11,7} Zn _{0,3} O ₁₉	19,16	1100	13,27	3040				

Рис. 1. Зависимость намагниченности насыщения формульной единицы $n_s(a, \delta)$, коэрцитивной силы $_{\sigma}H_c(s, z)$ ферритов $\mathrm{Sr}_{1-x}\mathrm{Pr}_x\mathrm{Fe}_{12-x}\mathrm{M}_x\mathrm{O}_{19}$ (M – Zn (1), Co (2), Mn (3)) от степени замещения x при температурах 6 K (a, b) и 300 K (δ , z)

В соответствии с двухподрешеточной моделью Гортера [6] намагниченность насыщения феррита стронция SrFe₁₂O₁₉ при 0 К теоретически равна 20 $\mu_{\rm B}$ и определяется разницей магнитных моментов двух антиферромагнитно ориентированных подрешеток *B* и *A*, в которых расположены 8 и 4 ионов Fe³⁺ соответственно (магнитный момент Fe³⁺ равен 5 $\mu_{\rm B}$). В подрешетке *B* семь ионов Fe³⁺ находятся в октаэдрических позициях 12*k*, 2*a* и один ион Fe³⁺ окружен пятью ионами кислорода (позиция 2*b*). В подрешетке *A* два иона Fe³⁺ находятся в тетраздрических и два в октаэдрических позициях, которые обозначают как $4f_1$ и $4f_2$ соответственно. Учитывая предпочтение ионов Zn²⁺ занимать тетраэдрические позиции в структуре шпинели можно ожидать, что в системе Sr_{1-x}Nd_xFe_{12-x}Zn_xO₁₉ будет наблюдаться повышение *n_s*. Однако данные, полученные для этой системы (табл. 1) показывают, что замещение до 20% ионов Sr²⁺ не приводит к заметному увеличению значения *n_s*. Для феррита $Sr_{0,9}Pr_{0,1}Fe_{11,9}Zn_{0,1}O_{19}$ значение намагниченности n_s при 6 К больше, чем для $SrFe_{12}O_{19}$ на 0,34 μ_B (табл. 1). Если предположить, что все ионы Zn^{2+} расположены в подрешетке A, то намагниченность насыщения феррита с x = 0,1при 0 К определяется выражением $n_s = (8 \cdot 5) - (3,9 \cdot 5 + 0,1 \cdot 0) = 20,50 \mu_B$. Значит, величина n_s для данного феррита должна увеличиваться на 0,5 μ_B по сравнению с намагниченностью SrFe₁₂O₁₉. Экспериментальное значение разности 0,34 μ_B подтверждает предположение о размещении ионов Zn²⁺ в подрешетке A (позиции $4f_1$).

Намагниченность насыщения n_s феррита Sr_{0,9}Nd_{0,1}Fe_{11,9}Co_{0,1}O₁₉ при 6 К больше, чем для SrFe₁₂O₁₉ на 0,13 µ_В. Если предположить, что ионы Со²⁺ в высокоспиновом состоянии, магнитный момент которых равен 3 µ_в, преимущественно располагаются в позициях подрешетки A, то n_s феррита Sr_{0,9}Nd_{0,1}Fe_{11,9}Co_{0,1}O₁₉ при температуре 0 К определяется выражением $n_s =$ $= (8 \cdot 5) - (3,9 \cdot 5 + 0,1 \cdot 3) = 20,20 \mu_{\rm B}$, которое показывает, что при x = 0,1 n_s увеличивается на 0,20 µ_В. Для намагниченности феррита Sr_{0.8}Pr_{0.2}Fe_{11.8}Co_{0.2}O₁₉ аналогичные рассуждения приводят при 0 К к следующему выражению $n_s = (8 \cdot 5) - (3,8 \cdot 5 + 0,2 \cdot 3) = 20,40 \ \mu_B$. To есть при температуре, близкой к абсолютному нулю, намагниченность насыщения данного феррита на 0,40 µ_в больше, чем для SrFe₁₂O₁₉. Экспериментально полученная разность значений n_s Sr_{0.8}Pr_{0.2}Fe_{11.8}Co_{0.2}O₁₉ и SrFe₁₂O₁₉, равная 0,52 µ_B (табл. 1; рис. 1, а, кривая 2), подтверждает предположение о размещении ионов Со²⁺ в позициях подрешетки A (позиции $4f_2$).

Если предположить, что в твердых растворах ферритов систем $Sr_{1-x}Ln_xFe_{12-x}Mn_xO_{19}$ (Ln – Pr, Nd) ионы Mn^{2+} находятся в высокоспиновом состоянии с магнитным моментом 5 μ_B , то за-

мещение ионов Fe^{3+} ионами Mn^{2+} не должно приводить к возрастанию значения n_s. Однако, если предположить, что ионы Mn²⁺ в низкоспиновом состоянии с магнитным моментом 1 µ_В располагаются в подрешетке А антипарралельно ионам Fe^{3+} этой подрешетки, то при x = 0.2 $n_s = (8 \cdot 5) - (3,8 \cdot 5 - 0,2 \cdot 1) = 21,20 \mu_B$. Значит, при температуре, близкой к 0 К, n_s ферритов $Sr_{0.8}Ln_{0.2}Fe_{11.8}Mn_{0.2}O_{19}$ (Ln – Nd, Pr) на 1,2 μ_B больше намагниченности SrFe₁₂O₁₉. Экспериментальные данные (табл. 1; рис. 1, а, кривая 3) пока-Sr_{0.8}Pr_{0.2}Fe_{11.8}Mn_{0.2}O₁₉, зывают для что Sr_{0.8}Nd_{0.2}Fe_{11.8}Mn_{0.2}O₁₉ при 6 К *n*_s больше намагниченности SrFe₁₂O₁₉ на 1,15 μ_B , 1,03 μ_B соответственно, что подтверждает сделанное предположение о размещении ионов Mn²⁺ в низкоспиновом состоянии в позициях $(4f_1, 4f_2)$ подрешетки A.

Для всех исследуемых ферритов коэрцитивная сила $_{\sigma}H_c$, намагниченность насыщения n_s при температурах 6 и 300 К достигают максимального значения при x = 0, 1-0, 2 (табл. 1; рис. 1, *в*, *г*). Возрастание $_{\sigma}H_c$ и n_s при увеличении x до 0,2 указывает на перспективность ферритов $Sr_{1-x}Ln_xFe_{12-x}Me_xO_{19}$ (Ln – Nd, Pr; Me – Zn, Co, Mn) при x = 0, 1-0, 2 для изготовления постоянных магнитов с характеристиками лучшими, чем у магнитов из SrFe₁₂O₁₉. Сравнительный анализ результатов изучения магнитных свойств исследуемых ферритов (табл. 1; рис. 1) показывает, что наиболее перспективны кобальт и марганецсодержащие ферриты. Поэтому ферриты $Sr_{1-x}Pr_xFe_{12-x}Me_xO_{19}$, $Sr_{1-x}Nd_xFe_{12-x}Me_xO_{19}$ (Me – Co, Mn) (x = 0; 0, 1; 0, 2; 0, 3) были выбраны в качестве основы для изготовления изотропных постоянных магнитов. Характеристики изотропных постоянных магнитов из ферритов Sr_{1-x}Ln_xFe_{12-x}Me_xO₁₉, (Me - Co, Mn; Ln - Nd, Pr) (x = 0; 0,1; 0,2; 0,3) представлены на рис. 2 и в табл. 2.

Рис. 2. Зависимость остаточной индукции $B_r(a)$ и коэрцитивной силы ${}_{B}H_c(\delta)$ изотропных постоянных магнитов из ферритов $\mathrm{Sr}_{1-x}\mathrm{Pr}_x\mathrm{Fe}_{12-x}\mathrm{M}_x\mathrm{O}_{19}$ (M – Co (1), Mn (2)), содержащих добавку SrFe_{9,5}Al_{2.5}O₁₉, от степени замещения x

Таблица 2

norrowing a sorrowing with and the network of the sorrowing we part of										
	Без добавки SrFe _{9,5} Al _{2,5} O ₁₉			С добавкой SrFe _{9.5} Al _{2.5} O ₁₉						
Состав	ρ _{каж} ,	рт	11 0	$(BH)_{\max}$,	$\rho_{\kappa a \kappa}$	рт	11 0	$(BH)_{\max}$,		
	Γ/cm^3	D_r , 1	$_B\Pi_c, \mathcal{I}$	кДж/м ³	г/см ³	D_r , 1	$_B\Pi_c, \mathcal{I}$	кДж/м ³		
$Sr_{1-x}Pr_xFe_{12-x}Co_xO_{19}$										
$SrFe_{12}O_{19}$	4,70	0,18	1194	4,80	4,91	0,19	1445	5,11		
$Sr_{0,9}Pr_{0,1}Fe_{11,9}Co_{0,1}O_{19}$	4,64	0,180	1319	5,11	5,03	0,20	1508	5,35		
Sr _{0,8} Pr _{0,2} Fe _{11,8} Co _{0,2} O ₁₉	4,56	0,175	1495	5,35	5,01	0,22	1596	6,01		
Sr _{0,7} Pr _{0,3} Fe _{11,7} Co _{0,3} O ₁₉	4,61	0,180	1269	5,10	5,14	0,20	1533	5,85		
			$\mathrm{Sr}_{1-x}\mathrm{Nd}_x\mathrm{F}$	$e_{12-x}Co_xO_{19}$						
$SrFe_{12}O_{19}$	4,70	0,18	1194	4,80	4,89	0,19	1458	5,12		
Sr _{0,9} Nd _{0,1} Fe _{11,9} Co _{0,1} O ₁₉	4,77	0,19	1282	5,08	5,07	0,20	1483	5,30		
Sr _{0,8} Nd _{0,2} Fe _{11,8} Co _{0,2} O ₁₉	4,81	0,19	1395	5,20	5,11	0,20	1521	5,67		
Sr _{0,7} Nd _{0,3} Fe _{11,7} Co _{0,3} O ₁₉	4,73	0,18	1269	5,12	5,17	0,20	1495	5,48		
			$\mathrm{Sr}_{1-x}\mathrm{Pr}_{x}\mathrm{Fe}$	$e_{12-x}Mn_xO_{19}$						
SrFe ₁₂ O ₁₉	4,71	0,18	1194	4,80	4,90	0,19	1445	5,11		
$Sr_{0,9}Pr_{0,1}Fe_{11,9}Mn_{0,1}O_{19}$	4,90	0,19	1508	5,52	5,13	0,20	1571	6,02		
Sr _{0,8} Pr _{0,2} Fe _{11,8} Mn _{0,2} O ₁₉	4,89	0,20	1596	6,10	5,10	0,21	1741	7,01		
Sr _{0,7} Pr _{0,3} Fe _{11,7} Mn _{0,3} O ₁₉	4,87	0,20	1558	5,92	5,06	0,20	1634	6,39		
$Sr_{1-x}Nd_xFe_{12-x}Mn_xO_{19}$										
$SrFe_{12}O_{19}$	4,71	0,18	1219	4,81	4,88	0,19	1470	5,14		
$Sr_{0,9}Nd_{0,1}Fe_{11,9}Mn_{0,1}O_{19}$	4,84	0,19	1470	5,36	5,10	0,20	1571	5,97		
$Sr_{0,8}Nd_{0,2}Fe_{11,8}Mn_{0,2}O_{19}$	4,87	0,20	1571	6,00	5,12	0,20	1671	6,77		
Sr _{0,7} Nd _{0,3} Fe _{11,7} Mn _{0,3} O ₁₉	4,89	0,20	1508	5,70	5,09	0,20	1596	6,03		
$Sr_{1-x}La_xFe_{12-x}Co_xO_{19}$										
$SrFe_{12}O_{19}$	4,69	0,18	1194	4,79	4,89	0,19	1445	5,12		
Sr _{0,9} La _{0,1} Fe _{11,9} Co _{0,1} O ₁₉	4,76	0,18	1269	5,01	5,04	0,19	1483	5,25		
Sr _{0,8} La _{0,2} Fe _{11,8} Co _{0,2} O ₁₉	4,80	0,18	1345	5,13	5,10	0,18	1508	5,35		
Sr _{0,7} La _{0,3} Fe _{11,7} Co _{0,3} O ₁₉	4,83	0,18	1307	5,10	5,10	0,18	1495	5,29		
Ферриты систем $Sr_{1-x}La_xFe_{11-x}Co_xO_{17,5}$, $Sr_{1-x}Pr_xFe_{11-x}Mn_xO_{17,5}$										
SrFe ₁₁ O _{17,5}	4,90	0,19	1596	5,93	5,03	0,19	1634	6,21		
Sr _{0,8} La _{0,2} Fe _{10,8} Co _{0,2} O _{17,5}	5,04	0,19	1696	6,42	5,12	0,19	1747	6,53		
$Sr_{0.8}Pr_{0.2}Fe_{10.8}Mn_{0.2}O_{17.5}$	5,07	0,20	1759	6,64	5,14	0,20	1847	7,31		

Кажущаяся плотность $\rho_{каж}$, остаточная магнитная индукция B_r , коэрцитивная сила $_BH_c$ и энергетическое произведение $(BH)_{max}$ постоянных изотропных магнитов из исследованных ферритов

При изготовлении постоянных магнитов в качестве дополнительной изоморфной добавки использовался феррит-алюминат стронция $SrFe_{9,5}Al_{2,5}O_{19}$. Как было впервые установлено нами, применение $SrFe_{9,5}Al_{2,5}O_{19}$, наряду с традиционными добавками (CaCO₃, SiO₂, H₃BO₃), приводит к повышению коэрцитивной силы и энергетического произведения (*BH*)_{max} постоянного анизотропного магнита из феррита $SrFe_{12}O_{19}$ на 10% [7].

Анализ результатов измерения характеристик постоянных изотропных магнитов из ферритов Sr_{1-x}Ln_xFe_{12-x}M_xO₁₉ (Ln – Nd³⁺, Pr³⁺, La³⁺; M – Co²⁺, Mn²⁺) показывает, что для образцов ферритов данных систем зависимость энергетического произведения (*BH*)_{max} и коэрцитивной силы $_{B}H_{c}$ от степени замещения x достигает наибольшего значения при x = 0,2, как для магнитов, содержащих добавку SrFe_{9,5}Al_{2,5}O₁₉, так и без нее (табл. 2). При этом в ряду ферритов: Sr_{0,8}La_{0,2}Fe_{11,8}Co_{0,2}O₁₉, Sr_{0,8}Nd_{0,2}Fe_{11,8}Co_{0,2}O₁₉, $Sr_{0,8}Pr_{0,2}Fe_{11,8}Co_{0,2}O_{19}$, $Sr_{0,8}Nd_{0,2}Fe_{11,8}Mn_{0,2}O_{19}$ Sr_{0,8}Pr_{0,2}Fe_{11,8}Mn_{0,2}O₁₉ наблюдалось увеличение значений энергетического произведения $(BH)_{\text{max}}$ и коэрцитивной силы $_{B}H_{c}$ изотропных магнитов на их основе. Так, значения энергетического произведения (BH)_{тах} и коэрцитивной силы _вH_c изотропного магнита на основе $Sr_{0,8}Pr_{0,2}Fe_{11,8}Mn_{0,2}O_{19}$, не содержащего добавку SrFe_{9,5}Al_{2,5}O₁₉, больше, чем для аналогичного магнита из Sr_{0,8}La_{0,2}Fe_{11,8}Co_{0,2}O₁₉ на 18,9% и 18,7% соответственно, а при использовании добавки SrFe_{9,5}Al_{2,5}O₁₉ такое увеличение этих характеристик составляет 31,0 и 15,8% соответственно (табл. 2). Использование добавки феррита-алюмината стронция SrFe₉ ₅Al₂ ₅O₁₉ приводит к увеличению значений коэрцитивной силы $_{B}H_{c}$, энергетического произведения (BH)_{max}, остаточной намагниченности B_r для всех исследованных изотропных постоянных магнитов из ферритов $Sr_{1-x}Ln_xFe_{12-x}M_xO_{19}$ (Ln – Nd, Pr, La; M – Co, Mn) по сравнению с величинами этих параметров для магнитов, полученных без использования добавки феррита-алюмината. Например, использование добавки SrFe_{9.5}Al_{2.5}O₁₉ увеличивает значения энергетического произведения $(BH)_{max}$ и коэрцитивной силы $_{B}H_{c}$ изотроппостоянного ного магнита ИЗ феррита Sr_{0,8}Pr_{0,2}Fe_{11,8}Mn_{0,2}O₁₉ на 14,9 и 9,4% соответственно (табл. 2). Образцы магнитов, содержащие в качестве добавки феррит-алюминат SrFe_{9.5}Al_{2.5}O₁₉, имели более высокие значения кажущейся плотности ркаж, чем образцы, не содержащие эту добавку, что указывает на более интенсивное протекание процессов спекания при их изготовлении, так как кристаллическая структура добавки SrFe_{9.5}Al_{2.5}O₁₉ изоморфна структуре ферритов $Sr_{1-x}Ln_xFe_{12-x}M_xO_{19}$ (Ln – Nd, Pr, La; M – Co, Mn).

Известно, что магниты, изготовленные из феррита стронция, содержащего некоторый недостаток оксида Fe_2O_3 в составе (SrO $\cdot nFe_2O_3$; n < 6), имеют более высокие характеристики, чем у магнитов на основе феррита стехиометрического состава SrFe₁₂O₁₉ (SrO · 6Fe₂O₃) [8]. Поэтому с целью изучения влияния соотношения оксидов SrO и Fe₂O₃, нами были изготовлены изотропные постоянные магниты из нестехиометрических ферритов Sr_{1-x}Pr_xFe_{11-x}Mn_xO_{17,5}, Sr_{1-x}La_xFe_{11-x}Co_xO_{17,5} (x=0, 0,2). Данные ферриты можно рассматривать как системы на основе феррита SrO · 5,5Fe₂O₃, в котором часть ионов стронция замещена ионами La^{3+} , Pr^{3+} и эквивалентное количество ионов Fe^{3+} замещено ионами Co^{2+} , Mn^{2+} .

Установлено, что максимальные значения энергетического произведения (BH)_{тах} и коэрцитивной силы $_{B}H_{c}$, достигнутые для изотропных магнитов из нестехиометрических ферритов Sr_{1-x}Pr_xFe_{11-x}Mn_xO_{17,5}, Sr_{1-x}La_xFe_{11-x}Co_xO_{17,5} выше, чем для аналогичных магнитов из стехиометрических ферритов Sr_{1-x}Pr_xFe_{12-x}Mn_xO₁₉, Sr_{1-x}La_xFe_{12-x}Co_xO₁₉ (табл. 2). Так, энергетическое произведение (BH)_{тах} и коэрцитивная сила $_{B}H_{c}$ изотропного постоянного магнита на основе феррита Sr_{0,8}Pr_{0,2}Fe_{10,8}Mn_{0,2}O_{17,5}, изготовленного с использованием добавки феррита-алюмината стронция SrFe_{9,5}Al_{2,5}O₁₉, больше, чем для аналогичного магнита на основе феррита Sr_{0.8}Pr_{0.2}Fe₁₂Mn_{0.2}O₁₉ на 4,3 и 5,7% соответственно.

Сравнение зависимостей n_s и $B_{r_s} {}_{\sigma}H_c$ и ${}_{B}H_c$ для ферритов систем $\mathrm{Sr}_{1-x}\mathrm{Pr}_x\mathrm{Fe}_{12-x}\mathrm{M}_x\mathrm{O}_{19}$ (M – Co, Mn) (рис. 1, δ , c, кривые 2, 3; рис. 2) от степени замещения x подтверждает предположение о том, что гетеровалентное замещение приводит к возрастанию значения энергетического произведения (BH)_{тах} в данных системах.

Заключение. Исследование намагниченности насыщения n_s ферритов Sr_{1-x}Ln_xFe_{12-x}M_xO₁₉ (Ln – Nd, Pr, La; M – Co, Mn) при температуре 6 К позволило установить закономерности распределения ионов Zn^{2+} , Co^{2+} , Mn^{2+} в магнитных подрешетках при гетеровалентном замещении.

Результаты изучения изотропных керамических постоянных магнитов из ферритов $Sr_{0.8}Ln_{0.2}Fe_{11,8}M_{0.2}O_{19}$ (где Ln - Nd, Pr; M - Co, Mn) показали, что они имеют лучшие характеристики, чем изотропные магниты, изготовленные из феррита $Sr_{0.8}La_{0.2}Fe_{11,8}Co_{0.2}O_{19}$. Это указывает на перспективность практического применения ферритов $Sr_{0.8}Ln_{0.2}Fe_{11,8}M_{0.2}O_{19}$ для производства постоянных магнитов. Использование добавки $SrFe_{9,5}Al_{2,5}O_{19}$ позволяет повысить энергетическое произведение (*BH*)_{тах} и коэрцитивную силу изотропных постоянных магнитов из данных ферритов.

Литература

1. Hight energy ferrite magnets / H. Taguchi [et al.] // 7th International conference on ferrites, bordeaux, 3–6 september, 1996 / Bordeaux Convention Center France. Bordeaux, 1996. – P. 3–4.

2. Yamamoto, H. Magnetic properties of anisotropic sintered magnets using Sr - La - Co system powders by mechanical compounding method / H. Yamamoto, G. Obara // J. of the japan society of powder and powder metallurgy. – 2000. – Vol. 47. – P. 796–800.

3. Structural and magnetic properties of hydrothermally synthesised $Sr_{1-x}Nd_xFe_{12}O_{19}$ hexagonal ferrites / H. Mocuta [et al.] // J. of alloys and compounds. – 2004. – Vol. 364, Iss. 2. – P. 48–52.

4. Influence of the presence of Co on the rare earth solubility in M-type hexaferrite powders / L. Lechevallier [et al.] // J. of magnetism and magnetic materials. – 2007. – Vol. 316, Iss. 2. – P. e109–e111.

5. On the solubility of rare earths in M-type $SrFe_{12}O_{19}$ hexaferrite compounds / L. Lechevllier [et al.] // J. of Phys: condens. matter. - 2008. - Vol. 20. - P. 175203-175212.

6. Гортер, Е. В. Намагниченность насыщения и кристаллохимия ферримагнитных окислов / Е. В. Гортер // Успехи физ. наук. – 1955. – Т. 57, № 2. – С. 273–346.

7. О возможном механизме влияния изоморфных добавок Ba(Sr)Al_{2,5}Fe_{9,5}O₁₉ на коэрцитивную силу гексагональных ферритов М-типа / Л. А. Башкиров [и др.] // Материалы электронной техники. – 2006. – № 4. – С. 39–42.

8. Технология производства материалов магнитоэлектроники. / Л. М Летюк [и др.]. – М.: Металлургия, 1994. – 416 с.

Поступила 01.03.2011