УДК 54-31+537.32+666.654

Н. С. Красуцкая, аспирант (БГТУ); М. Д. Денисенко, студентка (БГТУ); А. И. Клындюк, кандидат химических наук, доцент (БГТУ)

ТЕРМО-ЭДС ТВЕРДЫХ РАСТВОРОВ $Na_{0.55}Co_{0.9}M_{0.1}O_2$ (M = Sc – Zn)

Синтезированы керамические образцы твердых растворов Na_{0,55}Co_{0,9}M_{0,1}O₂ (M = Sc – Zn). При помощи электронной микроскопии и денситометрии исследована их микроструктура. Также в интервале температур 300–1100 К на воздухе изучена их термо-ЭДС. Показано, что величина термо-ЭДС фаз Na_{0,55}Co_{0,9}M_{0,1}O₂ определяется зарядовым и спиновым состояниями катионов кобальта, которые зависят от природы замещающего катиона 3*d*-металла. Установлено, что наибольшими величинами термо-ЭДС обладают оксиды Na_{0,55}Co_{0,9}M_{0,1}O₂ (M = Ti, Mn, Ni), что позволяет рассматривать их как основу для разработки новых эффективных оксидных термоэлектриков.

The ceramic samples of the Na_{0,55}Co_{0,9}M_{0,1}O₂ (M = Sc – Zn) solid solutions had been prepared. Their microstructure had been investigated using electron microscopy and densitometry. Also their thermo-EMF had been studied in air at 300 – 1000 K. It had been shown, that thermo-EMF value of the Na_{0,55}Co_{0,9}M_{0,1}O₂ phases were due to the charge and spin states of the cobalt cations, which depended on the nature of substituting 3*d*-metal cation. It had been found that Na_{0,55}Co_{0,9}M_{0,1}O₂ (M = Ti, Mn, Ni) oxides had maximal thermo-EMF values, that allow to consider them as a basis for development of the new effective oxide thermoelectrics.

Введение. Высокие значения электропроводности, термо-ЭДС и низкая теплопроводность слоистого оксида Na_xCoO_2 ($0,5 \le x \le 1,0$) позволяют рассматривать его как перспективную основу для разработки новых эффективных термоэлектриков [1, 2]. Одним из способов улучшения функциональных свойств (термоэлектрической добротности, химической устойчивости и т.д.) кобальтита Na_xCoO_2 является частичное замещение катионов кобальта в его структуре катионами других металлов.

Так, замещение кобальта медью приводит к улучшению спекаемости (уменьшению пористости) керамики Na(Co_{1-x}Cu_x)₂O₄ ($0 \le x \le 0,2$), увеличению ее электропроводности и термо-ЭДС, при этом наибольшие значения фактора мощности (Р) - $3.08 \cdot 10^{-3}$ Вт · м⁻¹ · K⁻² при температуре 1073 К – демонстрирует состав Na(Co_{0,9}Cu_{0,1})₂O₄ [3]. Пористость и термо-ЭДС поликристаллических образцов Na(Co_{1-x}Ni_x)₂O₄ ($0 \le x \le 0,2$) возрастают, а электропроводность уменьшается с ростом х; максимальное значение фактора мощности при температуре 1073 К зафиксировано для образца Na($Co_{0.95}Ni_{0.05}$)₂O₄ ($P_{1073} = 2.36 \cdot 10^{-3} \text{ BT} \cdot \text{m}^{-1} \cdot \text{K}^{-2}$) [4]. Замещение кобальта цинком в Na(Co_{1-x}Zn_x)₂O₄ $(0 \le x \le 0,2)$ приводит к увеличению пористости, электропроводности и термо-ЭДС керамики, результатом чего является значительное увеличение фактора мощности керамики – $P_{1073} = 1.7 \cdot 10^{-3}$ Вт · м⁻¹ · К⁻² и $P_{1073} =$ $P_{1073} = 1,7 \cdot 10^{-3}$ Вт · м⁻¹ · К⁻² и $P_{1073} = 0,4 \cdot 10^{-3}$ Вт · м⁻¹ · К⁻² для Na(Co_{0,95}Zn_{0,05})₂O₄ и NaCo₂O₄ соответственно [5].

В работах [6–8] была предпринята попытка улучшения термоэлектрических свойств кобальтита $Na_xCo_2O_4$ (x = 1,5; 1,7) путем частичного замещения кобальта серебром. Было установлено, что растворимость Ag₂O в $Na_xCo_2O_4$ очень мала, вследствие чего образцы $Na_xCo_{2-x}Ag_xO_2$ представляют собой микрокомпозиты, матрицу которых образует фаза $Na_xCo_2O_4$, а серебро выделяется на межзеренных границах в виде микровключений Ag или Ag₂O [9]. Функциональные свойства композитов лучше, чем у базовой фазы $Na_xCo_2O_4$: так, величина параметра Иоффе (*ZT*) керамики $Na_{1,5}CoO_2$ и $Na_{1,5}Co_{1,8}Ag_{0,2}O_2$ при 973 К составляет приблизительно 0,04 и 0,12 соответственно [7], а фактор мощности керамики достигает значения $687 \cdot 10^{-6}$ Вт · м⁻¹ · K⁻² для $Na_{1,7}Co_{1,8}Ag_{0,2}O_2$ [8].

Анализ литературных данных показывает, что оптимальный с точки зрения повышения термоэлектрической добротности уровень замещения кобальта в Na_xCoO₂ установлен и составляет ~10 мол. %, в то время как задача поиска оптимального заместителя пока не решена.

С целью решения этой задачи в данной работе изучено влияние природы 3*d*-металла на микроструктуру и термо-ЭДС керамических образцов твердых растворов $Na_{0,55}Co_{0,9}M_{0,1}O_2$ (M = Sc – Zn).

Методика эксперимента. Образцы получали керамическим методом в интервале температур 1133–1203 К на воздухе в течение 24 ч по методике, описанной в [9]. Исходную шихту готовили из карбоната натрия и оксидов 3*d*металлов (квалификация реагентов не ниже «ч.д.а.»), взятых в соотношении Na : Co : M = = 0,6 : 0,9 : 0,1. В процессе термообработки образцы теряют часть оксида натрия. Зависимость содержания натрия в керамике Na_xCoO₂ от температуры и времени термообработки была изучена в работе [9], в соответствии с результатами которой полученной керамике был приписан состав Na_{0,55}Co_{0,9}M_{0,1}O₂ (M = Sc – Zn). Спеченные образцы шлифовали и обтачивали до придания им формы прямоугольных параллеленипедов.

Идентификацию образцов проводили при помощи рентгенофазового анализа (РФА) (рентгеновский дифрактометр D8 Advance Bruker AXS (Германия), СиК_{α}-излучение). Микроструктуру спеченной керамики исследовали при помощи сканирующего электронного микроскопа JSM-5610 LV (Япония). Кажущуюся плотность образцов (р_{эксп}) рассчитывали по их массе и геометрическим размерам. Термо-ЭДС керамики Na_{0,55}Co_{0,9}M_{0,1}O₂ определяли в направлении, перпендикулярном оси прессования, на воздухе в интервале температур 300–1100 К по методике, описанной в [9].

Результаты и их обсуждение. После завершения синтеза все образцы, за исключением $Na_{0,55}Co_{0,9}V_{0,1}O_2$, были однофазными, в пределах погрешности РФА, и имели структуру слоистого кобальтита натрия. Керамику состава $Na_{0,55}Co_{0,9}V_{0,1}O_2$ получить не удалось – образцы полностью разрушались в течение нескольких часов после извлечения из печи.

Одним из недостатков слоистого кобальтита натрия Na_xCoO₂ является его низкая устойчивость к воздействию атмосферной влаги и CO₂ – при длительном выдерживании на воздухе поверхность керамики частично разрушается в результате протекания следующих реакций:

$$6Na_{x}CoO_{2} + 3xCO_{2} \rightarrow$$

$$\rightarrow 3xNa_{2}CO_{3} + 2Co_{3}O_{4} + (4 - 6x)O_{2};$$

$$6Na_{x}CoO_{2} + 6xCO_{2} + 3xH_{2}O \rightarrow$$

$$\rightarrow 6xNaHCO_{3} + 2Co_{3}O_{4} + (4 - 3x)O_{2}.$$

Согласно результатам визуального и микроскопического исследования, при длительном выдерживании на воздухе поверхность образцов твердых растворов $Na_{0,55}Co_{0,9}M_{0,1}O_2$ деградирует значительно меньше, чем поверхность образца $Na_{0,55}CoO_2$. Таким образом, частичное замещение кобальта другими 3*d*-металлами в структуре слоистого кобальтита натрия приводит к значительному повышению химической устойчивости керамики, полученной на основе этой фазы.

Как видно из рис. 1, зерна керамики имели форму пластинок размером до 10 мкм и толщиной 1 мкм; широкой стороной пластинки были ориентированы преимущественно перпендикулярно оси прессования, что указывает на частичное текстурирование образца.

Значения плотности керамических образцов твердых растворов $Na_{0,55}Co_{0,9}M_{0,1}O_2$ (M = Sc, Ti, Cr, Mn, Ni – Zn) были несколько ниже значения плотности для незамещенной фазы $Na_{0,55}CoO_2$ ($\rho_{_{9ксп}} = 3,65 \text{ г/сm}^3$) и изменялись в пределах 2,81–3,59 г/см³ (табл. 1). Другими словами, пористость керамики на основе слоистого ко-

бальтита натрия возрастает при частичном замещении кобальта другими 3*d*-металлами в его структуре, что находится в хорошем согласии с литературными данными [4, 5].

Рис. 1. Электронная микрофотография поверхности образца Na_{0,55}CoO₂, спеченного при 1203 К

Значения коэффициента термо-ЭДС (*S*) оксидов $Na_{0,55}Co_{0,9}M_{0,1}O_2$ во всем интервале температур были положительными, из чего можно заключить, что основными носителями заряда в этих оксидах являются «дырки», т.е. эти соединения являются проводниками *p*-типа. Величина *S* слоистых кобальтитов натрия возрастала при увеличении температуры и немонотонно изменялась при увеличении порядкового номера замещающего кобальт 3*d*-металла, причем наибольшие значения термо-ЭДС наблюдались для твердых растворов $Na_{0,55}Co_{0,9}M_{0,1}O_2$ (M = Ti, Mn, Ni) (рис. 2).

Таблица 1

Значения кажущейся плотности (ρ_{эксп}, г/см³) керамических образцов Nac σ Coco Ma Oc (M = Sc – Zn)

$14a_{0,55}CO_{0,9}U1_{0,1}O_{2}$ ($141 - 5C - 2h_{1}$)								
М	ρ _{эксп}	М	$ρ_{ m эксп}$					
Sc	2,81	Со	3,65					
Ti	3,00	Ni	3,43					
Cr	3,48	Cu	3,24					
Mn	2,85	Zn	3,59					
Fe	3.00							

Возрастание термо-ЭДС керамики при частичном замещении кобальта титаном (марганцем) можно объяснить тем, что растворение оксидов титана (марганца) в кристаллической решетке Na_xCoO₂ приводит к уменьшению концентрации основных носителей в образующихся при этом твердых растворах Na_{0.55}Co_{0.9}M_{0.1}O₂ по реакциям:

$$TiO_2 \rightarrow Ti^{\bullet}_{Co} + 2O^{\times}_O + e, e + h \rightarrow 0;$$

$$Mn_2O_3 + \frac{1}{2}O_2 \rightarrow 2Mn^{\bullet}_{Co} + 4O^{\times}_O + 2e;$$

$$e + h \rightarrow 0.$$

Рис. 2. Зависимость коэффициента термо-ЭДС твердых растворов $Na_{0,55}Co_{0,9}M_{0,1}O_2$ (M = Sc – Zn) от температуры (*a*) и природы замещающего кобальт 3*d*-металла (*б*): M = Sc (1), Ti (2), Cr (3), Mn (4), Fe (5), Co (6), Ni (7), Cu (8), Zn (9); T = 350 (10), 700 K (11)

Рассмотренный выше квазихимический подход не позволяет объяснить, однако, ни возрастание термо-ЭДС керамики при замещении кобальта никелем (цинком), ни сложный характер изменения термо-ЭДС твердых растворов $Na_{0,55}Co_{0,9}M_{0,1}O_2$ при изменении природы катиона 3*d*-металла, замещающего катионы кобальта (рис. 2, δ).

Электронная подсистема кобальтитов сильно коррелирована, и для описания их термо-ЭДС предложено использовать формулу Хейкеса, которая для оксидов Na_xCoO_2 ($x \ge 0,5$) может быть записана в виде

$$S = \frac{k}{e} \ln \left(\frac{g_4}{g_3} \frac{[\text{Co}^{3+}]}{[\text{Co}^{4+}]} \right),$$

где k – постоянная Больцмана; e – заряд электрона; g_4 и g_3 – число конфигураций, которым может быть реализовано состояние катионов Co⁴⁺ и Co³⁺ соответственно; [Co³⁺] и [Co⁴⁺] – концентрации катионов соответственно Co³⁺ и Co⁴⁺ в структуре Na_xCoO₂ [10].

Как видно из приведенного соотношения, термо-ЭДС оксидов Na_xCoO_2 зависит как от соотношения концентраций $[Co^{3+}] / [Co^{4+}]$, так и от соотношения g_4 / g_3 , которое определяется спиновыми состояниями катионов Co^{3+} и Co^{4+} в их структуре. Катионы кобальта Co^{3+} (Co^{4+}) в Na_xCoO_2 могут существовать в низко- (HC), промежуточно- (ПС) и высокоспиновом состоянии (ВС), а также в смешанном состоянии. Вырождение катионов при этом принимает различные значения (табл. 2), а коэффициент термо-ЭДС изменяется в широких пределах (как было показано в [10], термо-ЭДС оксида NaCo₂O₄ может изменяться в пределах от -84до 214 мкВ/К в зависимости от спинового состояния катионов кобальта в этой фазе).

Базируясь на предложенном в [10] подходе, мы провели расчет термо-ЭДС кобальтитов Na_{0,55}Co_{0,9}M_{0,1}O₂ в рамках различных моделей. В модели А принимали, что замещение кобальта другим 3*d*-металлом приводит только к изменению соотношения концентраций катионов Co³⁺ и Co⁴⁺, а сами катионы в твердых растворах находятся в низкоспиновом состоянии, как и в незамещенном кобальтите натрия [11]. В моделях Б и В дополнительно предполагали, что катион Co⁴⁺ в твердых растворах находится в смешанном состоянии: (HC + BC) (модель Б) или (HC + ПС + BC) (модель В).

Сравнение результатов расчетов с экспериментальными данными представлено на рис. 3; для удобства по оси ординат отложены значения относительной термо-ЭДС S / S_0 , которую находили как отношение термо-ЭДС твердого раствора $Na_{0,55}Co_{0,9}M_{0,1}O_2$ (S) к термо-ЭДС незамещенной фазы $Na_{0,55}CoO_2$ (S₀).

Таблица 2

Значения параметров g3 и g4 катионов кобальта в различных спиновых состояниях

Параметр	НС	ПС	BC	$HC + \Pi C$	HC + BC	$\Pi C + BC$	$HC + \Pi C + BC$
g_3	1	18	15	19	16	33	34
g_4	6	24	6	30	12	30	36

Как видно из рис. 3, наилучшее согласие с экспериментом для твердого раствора $Na_{0,55}Co_{0,9}Cu_{0,1}O_2$ дает модель Б, а для остальных твердых растворов – модель В. Таким образом, на основании анализа полученных результатов и литературных данных можно сделать вывод о том, что термо-ЭДС твердых растворов $Na_{0,55}Co_{0,9}M_{0,1}O_2$ определяется зарядовым и спиновым состояниями катионов кобальта, которые различным образом изменяются при замещении катионов кобальта в структуре слоистого кобальтита натрия катионами других 3*d*-металлов.

Рис. 3. Зависимость относительной термо-ЭДС (*S* / *S*₀) твердых растворов Na_{0,55}Co_{0,9}M_{0,1}O₂ от природы замещающего кобальт 3*d*-металла: *l* – расчет по модели А; *2* – расчет по модели Б; *3* – расчет по модели В; *4* – экспериментальные данные (для *T* = 700 K)

Максимальными значениями термо-ЭДС характеризуются твердые растворы $Na_{0,55}Co_{0,9}M_{0,1}O_2$ (M = Ti, Mn, Ni), что позволяет рассматривать их как основу для разработки новых эффективных оксидных термоэлектриков.

Следует отметить, что результаты измерения термо-ЭДС оксидов $Na_{0,55}Co_{0,9}M_{0,1}O_2$ (M = Ni, Zn) хорошо согласуются с литературными данными [4, 5].

Заключение. В работе получены керамические образцы твердых растворов $Na_{0,55}Co_{0,9}M_{0,1}O_2$ (M = Sc, Ti, Cr – Fe, Ni – Zn), при помощи электронной микроскопии и денситометрии изучена их микроструктура, на воздухе в интервале температур 300–1100 К исследована их термо-ЭДС. Показано, что термо-ЭДС керамики определяется соотношением концентраций катионов Co^{3+} и Co^{4+} в их структуре и спиновыми состояниями этих катионов, которые зависят от природы замещающего катионы кобальта катиона 3*d*-металла. Установлено, что наиболее эффективным с точки зрения повышения термо-ЭДС является замещение кобальта титаном, марганцем или никелем.

Работа выполнена в рамках ГПНИ «Функциональные и машиностроительные материалы, наноматериалы» (подпрограмма «Кристаллические и молекулярные структуры», задание 1.08) и при поддержке Министерства образования Республики Беларусь (ГБ № 11–031).

Литература

1. Terasaki, I. Novel physics and functions in the layered cobalt oxides: from thermoelectricity to ferromagnetism / I. Terasaki // Physica B. – 2006. – Vol. 383. – P. 107–110.

2. High-temperature electrical conductivity and thermoelectric power of Na_xCoO_2 / P. Liu [et al.] // Solid State Ionics. – 2008. – Vol. 179. – P. 2308–2312.

3. Influence of partial substitution of Cu for Co on the thermoelectric properties of $NaCo_2O_4$ / K. Park [et al.] // J. of Alloys and Comp. – 2006. – Vol. 407 – P. 213–219.

4. Park, K. Improvement in high-thermoelectric properties of $NaCo_2O_4$ through partial substitution of Ni for Co / K. Park, K. U. Jang // Materials Letters. – 2006. – Vol. 60. – P. 1106– 1110.

5. Park, K. Enhanced temoelectric properties of $NaCo_2O_4$ by adding ZnO / K. Park, J. H. Lee // Materials Letters. -2008. - Vol. 62. - P. 2366-2368.

6. Thermoelectric power and electrical resistivity of Ag-doped $Na_{1,5}Co_2O_4$ / T. Seetawan [et al.] // J. of Alloys and Comp. – 2006. – Vol. 407. – P. 314–317.

7. Ситаван, Т. Термоэлектрические свойства Na_xCo₂O₄ с добавками Ag / Т. Ситаван // Термоэлектричество. – 2006. – №. 2. – С. 17–23.

8. Self-ignition route to Ag-doped $Na_{1,7}Co_2O_4$ and its thermoelectric properties / N. Li [et al.] // J. of Alloys and Comp. – 2009. – Vol. 467. – P. 444–449.

9. Клындюк, А. И. Влияние температуры спекания на свойства керамики Na_xCoO₂ / А. И. Клындюк, Н. С. Красуцкая, Е. М. Дятлова // Труды БГТУ. Сер. III, Химия и технология неорган. в-в. – 2010. – Вып. XVIII. – С. 9–102.

10. Thermopower in cobalt oxides / W. Koshibae [et al.] // Physica B. – 2000. – Vol. 62. – P. 6869–6872.

11. X-ray absorption study of layered Co oxides with a Co–O triangular lattice / T. Mizokawa [et al.] // Phys. Rev. B. – 2005. – Vol. 71. – P. 193107 (4 pages).

Поступила 01.03.2011