УДК 536.42+537.31+546.73+54-165

И. Н. Кандидатова, аспирант (БГТУ);
Л. А. Башкиров, доктор химических наук, профессор (БГТУ);
Г. С. Петров, кандидат химических наук, доцент (БГТУ);
Н. Н. Лубинский, кандидат химических наук, преподаватель (КИИ МЧС Республики Беларусь);
Л. С. Лобановский, кандидат физико-математических наук, старший научный сотрудник (НПЦ НАН Беларуси по материаловедению);
С. В. Труханов, кандидат физико-математических наук, старший научный сотрудник (НПЦ НАН Беларуси по материаловедению)

МАГНИТНАЯ ВОСПРИИМЧИВОСТЬ И ЭФФЕКТИВНЫЙ МАГНИТНЫЙ МОМЕНТ ИОНОВ НЕОДИМА ИНДАТОВ Nd_{1-x}La_xInO₃

Керамическим методом синтезированы индаты неодима-лантана Nd_{1-x}La_xInO₃, исследованы их магнитные свойства. Показано, что закон Кюри – Вейсса выполняется не во всем исследованном интервале температур. Для температурных интервалов, для которых соблюдается закон Кюри – Вейсса, были рассчитаны эффективные магнитные моменты ионов Nd³⁺ ($\mu_{^{3}\phi}$, Nd³⁺). Установлено, что при замещении парамагнитных ионов Nd³⁺ диамагнитными ионами La³⁺ эффективный магнитный момент ионов Nd³⁺ ($\mu_{^{3}\phi}$, Nd³⁺) уменьшается, что, вероятно, может быть обусловлено уменьшением спин-орбитального взаимодействия.

Indates of neodymium, lanthanum Nd_{1-x}La_xInO₃ were prepared by ceramic method and their magnetic properties were investigated. It was observed that Cirie – Weiss law was not obeyed for the whole temperature interval investigated. For the temperature intervals where the Cirie – Weiss law was obeyed effective magnetic moments of Nd³⁺ ions ($\mu_{ef, Nd^{3+}}$) were evaluated. It was found that with substitution of paramagnetic Nd³⁺ ions by diamagnetic La³⁺ ions the effective magnetic moments of Nd³⁺ ions $\mu_{ef, Nd^{3+}}$ decreased that probably might be due to spin-orbital interaction decrease.

Введение. Алюминаты, галлаты, индаты неодима и других редкоземельных элементов со структурой граната, перовскита являются хорошими материалами для изготовления активных элементов твердотельных лазеров. В работе [1] создание смешанных перовскитных структур, т.е. твердых растворов на основе алюминатов, скандатов, галлатов лантана и других редкоземельных элементов, отмечено как весьма перспективное направление получения соединений, монокристаллы которых могут применяться в качестве матриц для активных элементов твердотельных оптических квантовых генераторов. В литературе опубликовано много работ, посвященных изучению фазовых диаграмм Ln₂O₃ - Al₂O₃, Ln₂O₃ - Ga₂O₃, Ln₂O₃ -In₂O₃, механизма и кинетики образования соединений оксидов редкоземельных металлов (Ln₂O₃) с оксидами Al₂O₃, Ga₂O₃, In₂O₃ [2-7], однако их магнитные, электрические, оптические свойства изучены явно недостаточно. Недавно было обнаружено, что при гетеровалентном частичном замещении ионов La³⁺, Ga³⁺ в галлате лантана LaGaO₃ ионами двухвалентных металлов наблюдается значительная кислородионная проводимость, и они являются перспективными материалами для изготовления керамических мембран. При комнатной температуре алюминаты, галлаты, индаты редкоземельных элементов со структурой перовскита являются

диэлектриками. Однако в атмосфере водорода их электропроводность увеличивается на 7-8 порядков, что позволяет считать их перспективным материалом для изготовления химических сенсоров ДЛЯ определения содержания газавосстановителя в воздухе. При частичном изовалентном замещении парамагнитных ионов редкоземельных элементов в LnAlO₃, LnGaO₃, LnInO₃ диамагнитными ионами La³⁺ наблюдается магнитное разбавление редкоземельных ионов, приводящее к уменьшению их взаимодействия между собой и усилению влияния кристаллического поля на спин-орбитальное взаимодействие, что приводит к «частичному замораживанию» орбитального момента редкоземельных ионов. В литературе подобные исследования практически отсутствуют, несмотря на их большую научную и практическую значимость.

Цель настоящей работы – исследовать влияние изовалентного замещения парамагнитных ионов неодима Nd³⁺ диамагнитными ионами La³⁺ на эффективный магнитный момент ионов неодима в индатах неодима-лантана Nd_{1-x}La_xInO₃.

Методика эксперимента. Индаты неодималантана $Nd_{1-x}La_xInO_3$ (x = 0,0; 0,2; 0,3; 0,5; 0,7; 0,8; 0,9; 1,0) получали керамическим методом из оксидов индия, неодима, лантана. Все реактивы имели квалификацию «х.ч.». Предварительно прокаленные порошки исходных соединений, взятые в заданных молярных соотношениях,

смешивали и мололи в планетарной мельнице «Pulverizette 6» с добавлением этанола. Полученную шихту с добавлением этанола прессовали под давлением 50–75 МПа в таблетки диаметром 25 мм и высотой 5–7 мм и затем отжигали при 1523 К на воздухе в течение 5 ч. После предварительного обжига таблетки дробили, перемалывали, прессовали в бруски длиной 30 мм и сечением 5×5 мм², которые отжигали при температуре 1523 К на воздухе в течение 5 ч.

Удельная намагниченность (σ) и рассчитанная по ней удельная магнитная восприимчивость полученных образцов твердых растворов индатов неодима-лантана Nd_{1-x}La_xInO₃, в которых происходит магнитное разбавление парамагнитных ионов Nd³⁺ диамагнитными ионами лантана La³⁺, измерялась вибрационным методом в интервале температур 6–300 К в магнитном поле H = 0,79983 Тл на универсальной высокополевой измерительной системе (Cryogenic Ltd, London 4IS) ГО «НПЦ НАН Беларуси по материаловедению». Получены также зависимости намагниченности от величины поля до 14 Тл при температурах 6 и 298 К.

Основная часть. Результаты рентгенофазового анализа показали, что все синтезированные образцы являлись однофазными и имели структуру орторомбически искаженного перовскита.

Температурные зависимости обратных величин удельной магнитной восприимчивости (1 / χ_{ya}) для индатов неодима-лантана Nd_{1-x}La_xInO₃ показаны на рис. 1, из которого видно, что закон Кюри – Вейсса (линейная зависимость 1 / $\chi_{y_{T}}$ от *T*) выполняется не во всем исследованном интервале температур. Для интервалов температур, в которых удельная магнитная восприимчивость исследованных образцов изменяется по закону Кюри – Вейсса, методом наименьших квадратов определены уравнения линейной зависимости 1 / χ_{yg} от *T* $(1 / \chi_{yg} = a + bT)$. По коэффициентам *a* и *b* этих уравнений рассчитаны удельные постоянные Кюри $(C_{yg} = 1 / b)$; постоянные Вейсса ($\Theta =$ = -a/b) (табл. 1). Величины молярной постоянной Кюри (С_м) определяли путем умножения C_{ya} на молярную массу соответствующего индата $Nd_{1-x}La_xInO_3$.

Эффективный магнитный момент ионов неодима Nd^{3+} ($\mu_{3\phi, Nd^{3+}}$) в индатах неодималантана $Nd_{1-x}La_xInO_3$ вычисляли по формуле

$$\mu_{\mathrm{s}\phi,\,\mathrm{Nd}^{3+}} = f\sqrt{C_{\mathrm{M}}},\tag{1}$$

где
$$f = \sqrt{\frac{3k}{(1-x)N_{\rm A}\mu_{\rm B}^2}} = \sqrt{\frac{7,997}{1-x}}; k$$
 – постоянная

Больцмана; *N*_A – постоянная Авогадро; µ_B – магнетон Бора.

Найденные по формуле (1) значения эффективного магнитного момента ионов $Nd^{3+} \mu_{9\varphi, Nd^{3+}}$ в $Nd_{1-x}La_xInO_3$ приведены в табл. 1.

Эффективный магнитный момент ионов неодима Nd³⁺ ($\mu'_{3\phi, Nd^{3+}}$) в индатах Nd_{1-x}La_xInO₃ рассчитывали также по формуле (2) для температур 100 К, 200 К и 298 К (табл. 1 и 2):

$$\mu'_{9\phi, Nd^{3+}} = 2,828 \sqrt{\chi_{MOR, Nd^{3+(T-\Theta)}}}, \qquad (2)$$

где $\chi_{\text{мол, Nd}^{3+}}$ – молярная магнитная восприимчивость $Nd_{1-x}La_xInO_3$, рассчитанная на 1 моль ионов Nd^{3+} , см³/моль; Θ – постоянная Вейсса $Nd_{1-x}La_xInO_3$, К (табл. 1).

Таблица 1

Удельные и молярные постоянные Кюри (C_{уд}, C_м соответственно), постоянная Вейсса (Θ), эффективный магнитный момент ионов Nd³⁺ (μ_{эф, Nd}³⁺, μ'_{эф, Nd}³⁺) в интервале температур выполнения закона Кюри – Вейсса (T > 50 K) для образцов индатов Nd_{1-x}La_xInO₃

x	$C_{\rm yg} \cdot 10^2$, см ³ ·К/г	$C_{\rm M}$, см ³ ·К/моль	$\mu_{9\phi, Nd^{3+}}, \mu_B$	Интервал температур, К	Θ, Κ	$\mu'_{3\phi, Nd^{3+}, 298}, \ \mu_B$
0,0	0,5078	1,5591	3,53	120-240	-34,9	3,46
0,1	0,4296	1,3168	3,42	80-300	-36,0	3,42
0,2	0,3886	1,1892	3,23	130–290	-29,2	2,90
0,3	0,3430	1,0476	3,46	90–250	-29,7	—
0,5	0,2238	0,6814	3,30	70–250	-31,0	3,22
0,7	0,0934	0,2834	2,75	60–250	-19,2	2,64
0,8	0,0875	0,2648	3,25	70–250	-26,8	3,13
0,9	0,0403	0,1217	3,12	60–230	-19,3	2,79

Эффективные магнитные моменты ионов Nd^{3+} ($\mu'_{3\phi, Nd^{3+}}$), рассчитанные по формуле (2) при температурах 100 К, 200 К (табл. 2) и 298 К (табл. 1), незначительно отличаются от значений, рассчитанных по формуле (1) для интервала температур 120–240 К (табл. 1).

Таблица 2

Эффективный магнитный момент ионов Nd³⁺ (µ'_{эф, Nd³⁺) для Nd_{1-x}La_xInO₃ при температурах 100 К и 200 К}

x	$\mu'_{9\phi, Nd^{3+}, 100}, \ \mu_B$	$\mu'_{9\phi, Nd^{3+}, 200}, \ \mu_B$
0,0	3,56	3,54
0,1	3,42	3,40
0,2	—	3,47
0,3	3,47	3,46
0,5	3,31	3,31
0,7	2,64	2,64
0,8	3,27	3,21
0,9	3,10	3,02

Полученные результаты показывают, что увеличение степени замещения парамагнитных ионов неодима Nd³⁺ диамагнитными ионами лантана La³⁺ в Nd_{1-x}La_xInO₃ от x = 0 до x = 0,9 приводит к постепенному уменьшению эффективного магнитного момента ионов Nd³⁺ ($\mu'_{3\phi, Nd^{3+}}$ при 200 K) от 3,54 μ_B для NdInO₃ до 3,02 μ_B для Nd_{0,1}La_{0,9}InO₃.

Такое значительное уменьшение $\mu'_{3\varphi, Nd^{3+}}$, возможно, связано с уменьшением спинорбитального взаимодействия («частичного замораживания» орбитального магнитного момента кристаллическим полем орторомбически искаженного перовскита) и уменьшением вклада орбитального магнитного момента в результирующий магнитный момент ионов неодима Nd³⁺. Например, определенное нами значение эффективного магнитного момента ионов Nd^{3+} ($\mu_{3b, Nd^{3+}}$) в индате неодима NdInO₃ для интервала температур 120–240 К равняется 3,53 µ_в (табл. 1), и оно на 0,09 µ_в меньше теоретического значения эффективного спин-орбитального магнитного момента свободных ионов Nd³⁺(3,62 $\mu_{\rm B}$) и на 0,34 $\mu_{\rm B}$ меньше теоретического значения эффективного спинового магнитного момента ионов Nd^{3+} , находящихся в высокоспиновом состоянии (3 неспаренных 4*f*-электрона, μ_{ab} , $Nd^{3+} = 3,87 \mu_B$). Для низкоспинового состояния ионов Nd³⁺ (1 неспаренный 4f-электрон) теоретическое значение эффективного магнитного момента равняется $1,73 \mu_B$, а для твердого раствора Nd_{0.3}La_{0.7}InO₃ экспериментально определенное в данной работе значение µ'_{эф, Nd}³⁺ при 100 К равняется 2,64 µ_B. Следовательно, можно предположить, что при увеличении степени замещения х парамагнитных ионов Nd³⁺ диамагнитными ионами лантана La³⁺

наблюдается увеличение «частичного замораживания» орбитального магнитного момента ионов неодима Nd³⁺ и, возможно, стабилизация их в низкоспиновом состоянии.

Отрицательный знак постоянной Вейсса для исследованных соединений согласуется с данными работы [8], где установлено антиферромагнитное упорядочение ионов неодима Nd³⁺ в NdInO₃ при температурах ниже 1 К.

Полевые зависимости удельной намагниченности образцов индатов Nd_{1-x}La_xInO₃ при температурах 6 и 300 К в магнитных полях до 14 Тл приведены на рис. 2 и 3.

Рис. 2. Зависимость удельной намагниченности σ_{yg} от поля *H* для Nd_{1-x}La_xInO₃ при температуре 6 К: x = 0,2 (*1*); 0,3 (*2*); 0,5 (*3*); 0,7 (*4*); 0,9 (*5*)

Рис. 3. Зависимость удельной намагниченности σ_{yg} от поля *H* для Nd_{1-x}La_xInO₃ при температуре 300 К: x = 0,3 (*1*); 0,5 (*2*); 0,7 (*3*)

Из рис. 2 видно, что в полях выше 5 Тл удельная намагниченность индатов неодималантана $Nd_{1-x}La_xInO_3$ проявляет признаки к выходу на насыщение. При температуре 300 К удельная намагниченность $Nd_{1-x}La_xInO_3$ при увеличении напряженности магнитного поля *H* увеличивается линейно вплоть до 12–14 Тл (рис. 3).

Намагниченность насыщения n_s , выраженная в μ_B при 6 К, одной формульной единицы индатов Nd_{1-x}La_xInO₃, содержащей 1 моль ионов Nd³⁺, рассчитана по формуле

$$n_{\rm s} = \sigma_{\rm s} / (1 - x) \cdot 5585,$$
 (3)

где σ_s – удельная намагниченность насыщения, Гс·см³/г; 5585 – число, равное произведению величины магнетона Бора (9,274 · 10⁻²¹ эрг/Гс) на число Авогадро (6,021 · 10⁻²³ моль⁻¹).

Рассчитанные значения *n_s* приведены в табл. 3.

Таблица 3

Удельная намагниченность насыщения (σ_s) и намагниченность насыщения одной формульной единицы индатов Nd_{1-x}La_xInO₃ (n_s) при 6 К

x	$σ_s$, Γc·cm ³ /Γ	$n_s, \mu_{\rm B}$
0,0	14,180	0,77
0,1	19,073	1,16
0,2	17,408	1,19
0,5	10,104	1,10
0,8	4,264	1,16
0,9	2,130	1,19

В работе [8] нейтронографическим методом установлено, что при температурах ниже 1 К в NdInO₃ наблюдается антиферромагнитное межслоевое упорядочение магнитных моментов ионов Nd³⁺ по конфигурации типа $g_{v}a_{x}$, и при температуре 0,280 К магнитный момент ионов Nd³⁺ в этом соединении равен $(2,9 \pm 0,2 \mu_{\rm B})$. Данные, приведенные в табл. 3, показывают, что полученные по формуле (3) значения n_s лишь в 2-3 раза меньше величины, приведенной в работе [8] для магнитного момента ионов Nd³⁺ в NdInO₃ при 0,280 К. Следовательно, можно предположить, что при температуре 6 К и воздействии высокого магнитного поля порядка 13 Тл в NdInO₃ наблюдается такое же антиферромагнитное упорядочение магнитных моментов ионов Nd³⁺, индуцированное магнитным полем, как оно происходит в этом соединении при температурах <1 К в отсутствии магнитного поля за счет сверхобменного взаимодействия ионов $Nd^{3+} - Nd^{3+}$.

Заключение. Для индатов неодима-лантана $Nd_{1-x}La_xInO_3$ в интервале температур 6–300 К измерена магнитная восприимчивость $(0,0 \le x \le 1,0)$. Установлено, что закон Кюри – Вейсса выполняется не во всем интервале температур. Для интервалов температур, в которых удельная магнитная восприимчивость образцов изменяется по закону Кюри – Вейсса, определены эффективные магнитные моменты ионов неодима Nd³⁺. Показано, что эффективные магнитные моменты ионов неодима Nd³⁺ для твердых растворов Nd_{1-x}La_xInO₃ при увеличении степени замещения парамагнитных ионов Nd³⁺ диамагнитными ионами La³⁺ постепенно уменьшаются, что, возможно, вызвано «частичным замораживанием» орбитального магнитного момента ионов Nd³⁺ и уменьшением его вклада в эффективный магнитный момент.

Литература

1. Арсеньев, П. А. Кристаллохимия твердых растворов окисных соединений со структурой перовскита / П. А. Арсеньев, В. В. Фенин, А. В. Потемкин // Химия твердого тела. – 1979. – Вып. 3. – С. 131–134.

2. Магнитная восприимчивость и эффективный магнитный момент ионов неодима в Nd₂O₃, NdScO₃, NdGaO₃, NdInO₃ / Л. А. Башкиров [и др.] // Весці НАН Беларусі. Сер. хім. навук. – 2008. – № 1. – С. 15–19.

3. Магнитная восприимчивость и эффективный магнитный момент ионов Nd^{3+} , Co^{3+} в $NdCo_{1-x}Ga_xO_3 / H$. Н. Лубинский [и др.] // Неорган. материалы. – 2008. – Т. 44, № 9. – С. 1137–1143.

4. Кристаллическая структура и ИК-спектры кобальтитов-галлатов NdCo_{1-x}Ga_xO₃ / Н. Н. Лубинский [и др.] // Весці НАН Беларусі. Сер. хім. навук. – 2008. – № 3. – С. 5–9.

5. Кристаллическая структура и ИК-спектры кобальтитов-галлатов лантана LaCo_{1-x}Ga_xO₃ / Н. Н. Лубинский [и др.] // Стекло и керамика. – 2009. – № 2. – С. 17–20.

6. Кристаллическая структура и электрофизические свойства кобальтитов-галлатов лантана / Н. Н. Лубинский [и др.] // Труды БГТУ. Сер. III, Химия и технология неорган. в-в. – 2009. – Вып. XVII. – С. 114–118.

7. Физико-химические свойства индатов неодима, лантана / Г. С. Петров [и др.] // Труды БГТУ. Сер. III, Химия и технология неорган. в-в. – 2010. – Вып. XVIII. – С. 103–107.

8. Neutron diffraction study of the magnetic ordered Nd^{3+} in NdCoO₃ and NdInO₃ below 1 K / I. Plaza [et al.] // Physica B. – 1997. – Vol. 234. – P. 632–634.

Поступила 01.03.2011