ДИНАМИКА ВОДОРОДНЫХ СВЯЗЕЙ ВОДОРОДИСТЫХ СОЕДИНЕНИЙ Элементов II периода

© Г. И. Новиков

Беларусский государственный технический университет Беларусь, 220050, Минск, ул. Свердлова, 13a

Анализ корреляционных энергетических диаграмм водородистых соединений элементов II периода периодической системы позволил сделать вывод об экстремальном изменении энергии водородных связей в этом семействе с минимумом на CH₄, что согласуется с отсутствием у этого соединения свойств как гидрида углерода, так и карбида водорода и позволяет ему стать родоначальником бесчисленного множества углеводородов и других соединений органической химии. По результатам анализа проведена оценка значений степени полимеризации жидкого фторида водорода. Оценочная степень полимеризации «талой воды» согласуется с известной клатратной моделью ее строения.

В ряду соединений элементов II периода с водородом первые три члена классифицируют как гидриды, в которых водород электроотрицателен, тога как в последующих водород электроположитеен. Поэтому представляется важным анализ харакера водородных связей в них с позиций энергетики.

Нагляднее всего водородные связи проявляются химических процессах между газообразными моомерными молекулами, поэтому далее делается попытка оценить энергетику процессов (1) и (2).

$$(\text{LiH}) = \frac{1}{2}(\text{Li}_2\text{H}_2), \Delta H_1^0, \Delta S_1^0$$
(1)

$$(\text{BeH}_2) = \frac{1}{2} (\text{Be}_2\text{H}_4), \Delta H_2^0, \Delta S_2^0$$
(2)

Здесь и далее формулы молекул в газовой фазе аключены в круглые скобки. Третий представитель того ряда хорошо изучен, и для него известны небходимые табличные данные [1, 2].

BH₃) =
$$\frac{1}{2}$$
(B₂H₆), ΔH⁰₃ -58 κДж, ΔS⁰₃ -72 Дж/К (3)

Что же касается LiH и BeH₂, то для оценки знаений $\Delta H_{1,2}^0$ и $\Delta S_{1,2}^0$ были использованы известные тобличные данные [1, 2], а неизвестные оценены втодом, изложенным в работе [3]. Результаты проеденного анализа представлены в табл. 1, причем в жней части этой таблицы приведены данные для

Таблица 1

Система известных из литературы [1, 2] и оцененных (*) термодинамических характеристик гидридов МH_m [M = Li (m = 1), Be (m = 2), B (m = 3)] [ΔH_f^0 , кДж/моль; S^0 , Дж/(моль·K)], водородной связи в них ($E_{\text{в.с.}}$ кДж; $\Delta S_{\text{в.с.}}^0$, Дж/К), а также удельных объемов гидридов (V, см³/моль)

Форма, параметр	Li	Be	В
$[MH_{st}]^* \Delta H_f^0$	-90	125	-58*
$[MH_m], S^0$	20	25	44*
(MH _m), ΔH_f^0	140	300*	75
$(MH_m), S^0$	171	180*	188
$\frac{1}{2}(M_2H_{2m}), \Delta H_f^0$	25	210*	17
$\frac{1}{2}(M_2H_{2m}), S^0$	95	106*	116
Eвс	-115*	-90*	-58
$\Delta S^{0}_{B,c}$	-76*	-74*	-72
V	10	21*	32

Примечание. а) Здесь и далее формулы молекул в твердой фазе заключены в квадратные скобки.

 $E_{\rm B,c}$ (энергия водородных связей) и $\Delta S^0_{\rm B,c}$ (энтропия образования водородных связей), являющихся характеристиками процессов (1–3) (звездочкой отме-

Поступило в Редакцию 19 февраля 2002 г.

чены оцененные значения), а также мольные объемы гидридов.

Из приведенных в табл. 1 численных значений обращают на себя внимание значения Евс, которые различаются в широких пределах: от -58 до -115 кДж, т. е. существенно отличаются от известных значений энергий разрыва водородных связей, не превышающих 30-40 кДж/моль. Это и является указанием на возможную иную природу этих величин, характеризующих парообразные LiH, BeH2 и ВН₃ и их производные как соединения с прочными (в кристаллах LiH и BeH₂ - соответственно ионными и полимерными) связями. Из указанных в табл. 1 димерных форм экспериментально установленным и хорошо изученным является только B₂H₆ -циклическое соединение с трехцентровыми связями В-Н-В. Гидридные парообразные димеры Li₂H₂ и Ве₂Н₄ экспериментально пока не обнаружены. Поскольку твердый полимер [ВеН2], выше 200°С необратимо разлагается, приведем оценочный расчет парциального давления парообразного димера при этой температуре.

$$\frac{1}{n}[\text{BeH}_2]_n = \frac{1}{2}(\text{Be}_2\text{H}_4)$$

$$\Delta G^0_{473\text{ K}} = 85000 - 473.81 = \frac{-19.14.473}{2} \text{ lg}P_{\text{Be}_2\text{H}_4}$$

Отсюда $P_{\rm Be,H}$ ~10⁻¹ атм, т. е. ~70–75 мм рт. ст., что считается вполне достаточным для тензиметрического эксперимента. Однако равновесное давление газообразного водорода при этих условиях по реакции /_n[BeH₂]_n = (H₂) – [Be], $\Delta G_{473\,\rm K}^0$ –125000 – – 473·115 = –19.14·4731g $P_{\rm H_2}$, будет $P_{\rm H_2}$ ~10⁻²⁰ атм, т. е. разложение BeH₂ – процесс необратимый и вряд ли на его фоне может быть замечен парообразный димер.

Парциальное давление димера (Li_2H_2) при 416°С (когда давление насыщенного пара P_{LiH} 1 атм) рассчитанно из следующего равновесия.

$$[\text{LiH}] = \frac{1}{2}(\text{Li}_2\text{H}_2)$$
$$\Delta G^0_{690 \text{ K}} = 115000 - 690.75 = \frac{-19.14.690}{2} \text{Ig}P_{\text{LiH}}$$

Оно ожидается равным $P_{\text{Li}_2\text{H}_2} \sim 10^{-10}$ атм, т. е. является экспериментально неощутимой величиной.

Таким образом, проверить экспериментально термодинамические характеристики парообразных гидридов LiH и BeH₂, по-видимому, невозможно, однако особенности водородных связей гидридов лития, бериллия и бора в первом приближении можно проиллюстрировать приведенными в табл. 1 результатами оценок.

Следующими за гидридами лития, бериллия и бора в ряду водородных соединений элементов II периода являются CH₄, NH₃, H₂O и HF, которые считаются классическими представителями соединений с водородными связями.

Ранее [3, 4] обсуждалась полимеризация в парах фтористого водорода и молекул воды за счет образования водородных связей. Далее к ним примыкают водородные соединения других соседних по периодической системе элементов – азота и углерода, причем в ряду CH₄, NH₃, H₂O, HF энергия водородной связи нарастает от величины, близкой к нулю в {СН₄} (здесь и далее формулы веществ в жидкой фазе заключены в фигурные скобки), до десятков килоджоулей в жидком и полимерном парообразном HF, конкурируя с энергией валентных связей. Главными причинами такой последовательности являются, как известно, увеличение заряда ядер и числа неподеленных электронных пар, а также уменьшение числа валентно-связанных атомов водорода. Увеличение прочности водородных связей проявляется также в возрастающей тенденции к полимеризации, которая в наибольшей степени проявляется у фтороводорода, очень слабо - у паров воды (средняя молекулярная масса водяного пара в нормальной точке кипения определена равной 18.64 [5], что, по-видимому, завышено) и как будто бы отсутствует у парообразных NH₃ и CH₄. Однако хорошо известны и другие качественные показатели такой тенденции в жидком и твердом состояниях - аномалия температур кипения и плавления H₂O, NH₃ и HF, клатратные свойства льда и др.

С этих позиций интересно рассмотреть формализованный процесс сублимации кристаллических соединений этого ряда в мономерный пар $[\Im H_m] =$ = $(\Im H_m), \Delta H^0_{f(n)} - \Delta H^0_{f(kp)} = \Delta H^0_{cy6n}$, энергия которого в значительной степени характеризует разрыв водородных связей в молекулярных кристаллах (кДж/ моль): [CH₄] -74.9 + 84.4 = 9.5; [NH₃] -46.2 + 75.2 = = 29; [H₂O] -241.8 + 291.9 = 50; [HF] -268.6 + + 308.6 = 40, как это следует из данных табл. 2 [4, 5].

Из этой таблицы видно, что основной вклад в энергию разрыва водородных связей дает ориентационное взаимодействие (E_0), а индукционное (E_u) и дисперсионное (E_n), не являясь валентными, оказывают лишь дополнительное сопротивление выходу молекул в газовую фазу и участвуют в формировании теплоты плавления кристаллов. Поэтому,

Таблица 2

Распределение энергии водородных связей (*E*_{в с}) по видам взаимодействий в молекулярных кристаллах NH₃, H₂O и HF (кДж/моль)

Соеди- нение	$\Delta H^0_{\rm cy6n} = \\ = \Sigma E_{\rm o,u,\pi}$	Eo	En	Eд	L	$E_{\rm B,c} = E_{\rm o}/L$
CH4	9.5	0	~0.5	9	0	0
NH ₃	29	17	3	9	~1.7	10
H ₂ O	50	40	2	8	2	20
HF	40	30	2	8	1	30

разделив E_0 на число единичных водородных связей каждого вида молекул L (столбцы 6 и 7 табл. 2), получаем значения $E_{B,c}$ в кристаллических формах.

Считается общепринятой модель линейных поимеров (HF)_n с чередованием валентной и водородной связей и потому для фрагмента HF в поливерах принимается L = 1 и $E_{\rm B,c} = E_{\rm o}/L = 30$ кДж моль.

Каждая квадрупольная молекула воды может бразовывать в алмазоподобных кристаллах льда етыре водородные связи, т. е. для H_2O как фрагнента полимера L = 2, откуда $E_{B,c} = E_0/L = 40/2 = 20$ Дж/моль (табл. 2).

В молекулах NH₃ атом азота имеет одну неподеенную электронную пару и три атома водорода, и жно предположить, что в этих молекулах могут виться дополнительные возможности для усилеводородных связей, т. е. $2 > L \ge 1$. Если прослеть последовательность значений $E_{\rm B,c}$ в ряду CH₄ $E_{\rm Lc} \sim 0$), NH₃ ($E_{\rm B,c}$?), H₂O ($E_{\rm B,c}$ 20) и HF ($E_{\rm B,c}$ 30 CLж), то ожидаемая линейность этого хода привот к коррелятивному значению $E_{\rm B,c}$ (NH₃) 10 кДж, е. *L* можно принять равным 1.7 ($E_0/L = 10$ кДж, то 2).

В молекулах и конденсированных формах CH₄ чение энергии ориентационного взаимодействия первом приближении можно считать нулевым, с. $E_{\rm B,c}$ 0.

С учетом изложенного нами была уточнена и полнена (табл. 3) ранее проведенная графическая преляция значений ΔH_f^0 и S^0 полимерных парообизных форм CH₄, NH₃, H₂O и HF [3, 4, 6, 7].

Если использовать приведенные в табл. 3 значе- $\Delta H_{f}^{0}/n$ для H₂O, то в результате расчета получто при температуре кипения (t 100°C, P 1 в насыщенном паре парциальное давление диых молекул (H₄O₂) будет ~0.5 мм рт. ст., три-

Таблица 3

Система известных из литературы [1, 2] и оцененных (*) термодинамических характеристик [ΔH_{f}^{0} , кДж/моль; S^{0} , Дж/(моль·К)] водородистых соединений углерода (CH₄), кислорода (H₂O), азота (NH₃) и фтора (HF), отнесенных к степени полимеризации (*n*) в парах, а также температур плавления (t_{nn} , °C), кипения (t_{nn} , °C) и удельных объемов (V, см³/моль) этих соединений

Форма, параметр	C (<i>m</i> = 4)	N (<i>m</i> = 3)	O(m=2)	F (<i>m</i> = 1)
$[MH_m], \Delta H_f^0$	-84.4	-75.2	-291.9	-308.6
$[MH_m], S^0$	99.4	66.2	44.0	35.0
$\{\mathrm{MH}_m\}, \Delta H_f^0$	-83.4	-69.5	-285.8	-3,04.0
$\{\mathbf{MH}_m\}, S^0$	109.8	95.1	69.9	57.0
$(\mathrm{MH}_m), \Delta H_f^0$	-74.9	-46.2	-241.8	268.6
$(MH_m), S^0$	186.2	192.5	188.7	173.5
$^{1}/_{2}(M_{2}H_{2m}), \Delta H_{f}^{0}$	-74.9	-51.0	-252.0	-283
$\frac{1}{2}(M_2H_{2m}), S^0$	150	144	129	115
$\frac{1}{3}(M_{3}H_{3m}), \Delta H_{f}^{0}$	-74.9	-52.0	-255	-293
$\frac{1}{3}(M_3H_{3m}), S^0$	134	127	110	97
$^{1}/_{4}(M_{4}H_{4m}), \Delta H_{f}^{0}$	-75	-53	-257	-294
$\frac{1}{4}(M_4H_{4m}), S^0$	129	120	100	87
$^{1}/_{5}(M_{5}H_{5m}), \Delta H_{f}^{0}$	-76	-57	-261	-
$\frac{1}{5}(M_5H_{5m}), S^0$	125	102	94	_
$^{1}/_{6}(M_{6}H_{6m}), \Delta H_{f}^{0}$	_			299
$\frac{1}{6}(M_6H_{6m}), S^0$	-	-	-	67
t _{nn}	-182.5	-77.8	0	-83
l _{ion}	-161.5	-33.5	100	33.2
V	37.2	21.0	19.1	19.4

мерных – около 10^{-4} мм рт. ст. и тетрамерных – 10^{-7} мм рт. ст. Упомянутое выше [5] содержание димерных молекул (~3.5%, т. е. 27 мм рт. ст.), по-видимому, завышено, что можно объяснить трудностями надежного определения плотности насыщенного пара воды.

В насыщенном паре NH₃ (при -33.5° C и *P* 1 атм) и HF (при $+33^{\circ}$ C и *P* 1 атм) парциальное давление димера ~0.7 мм рт. ст. Однако пар HF в основном состоит из молекул гексамера (парциальное давление ~737 мм рт. ст.).

В насыщенном паре CH₄ (при -161.5° C и *P* 1 парциальное давление димера ожидается не более 0.08 мм рт. ст., что может быть объяснено не водородными связями, а дисперсионными силами, поскольку $E_{\rm B,c} \sim 0$.

Остановимся подробнее на графике корреляционной взаимосвязи $\Delta H_{f}^{0}/n = f(1/n)$ (рис. 1).

Из рис. 1 видно, что первоначально пологий ход корреляционных кривых на участках от n = 1 до n = 5-6 соответствует линейному ходу характеристик полимеризации, возможно, вплоть до образования замкнутых кольцеобразных полимеров. В области же, где можно ожидать более высоких степеней полимеризации, неминуем крутой «срыв» корреляционных кривых, обязательный для попадания их в точки, соответствующие кристаллическому состоя-

нию ($\Delta H_{f,298\,\text{K}}^0$ кристаллов). Такой «срыв» можно объяснить тем, что в циклических полимерах энергетически выгоднее дальнейшая полимеризация «блоками», с участием Е_и и Е_л (табл. 1) и образованием пространственных структур. Графически на рис. 1 такой «срыв» представлен на полимерах (NH₃)₅ и (H₂O)₅, в которых валентные углы (участки B, C) НОН (104.3°) и НNН (107.4°) в молекулах близки к требуемым по условиям частичной sp³гибридизации орбиталей при условии, что по форме такие полимеры могут быть почти плоскими (в равностороннем пятиугольнике угол близок к 108°). Такой же «срыв» неизбежен и для молекул СН4, которые из-за практического отсутствия водородных связей не полимеризуются в газовой фазе (значения ΔH⁰ полимеризации приняты равными

Рис. 1. Корреляционная взаимосвязь значений $\Delta H^0_{f,298 \text{ K}}$ молекул мономеров (*A*), кристаллических (*C*) и жидких, а также полимерных парообразных CH₄ (III, VI), NH₃ (I, II), H₂O (V, VI) и HF (VII, VIII) и величин 1/*n* (*n* – степень полимеризации) в интервале от 0 (кристаллический) до 1 (парообразный мономер).

млю), но энергии E_и и E_д (табл. 2) обеспечивают сонденсацию и кристаллизацию. На рис. 1 упомянутый «срыв» графически реализован в виде прямых, проведенных между точками для парообраз--ого пентамера и кристаллического состояния частки ВС). На том же рис. 1 через точки С, которым соответствуют значения $\Delta H_{f,298\,\mathrm{K}}^0$ жидкого состояния каждого из рассматриваемых веществ СН₄, NH₃, H₂O, HF), проведены горизонтальные инии до пересечения с корреляционными кривыми -а участках ВС. Этим точкам пересечения соответтвуют степени полимеризации жидкостей для H₂O ■ ≈ 20–25, для NH₃ и HF n ≈ 12–14 и для CH₄ n ≈ 50. Последнее удивительно, так как известно, что СН4 ян в паровой, ни в жидкой фазах не может быть полимеризован. Объяснить этот результат можно следующим образом.

Согласно используемой модели, кристаллическому состоянию форм соответствует 1/n = 0 или = ∞. Поэтому жидкому (расплавленному) состояяню должно соответствовать n <<∞. Если данное тещество в жидком состоянии полимеризовано, то стинятая модель дает значения n, имеющие реаль--ый смысл. Например, расчет, подобный изложен--ому, для жидкой серы дает *n* ≈ 50, что для нее толне реально, а для жидкого оксида NO₂ $n \approx 5$, что также представляется правдоподобным. Аналотичных примеров можно привести много. Возврашаясь к рассматриваемой диаграмме (рис. 1) для СН₄ (III, IV), следует, по-видимому, интерпретироить этот результат как указание не на конкретную степень полимеризации, а на множество единственвозможных слабых ван-дер-ваальсовских взаиподействий, т. е. как результат издержек модели в е предельном варианте использования.

Для жидких NH₃ и HF (рис. 1, кривые I, II и VII, чил. участки *BC*) полученные значения n = 12-14се вызывают возражений, так как молекулы этих се инений характеризуются близким числом водородных связей, а для HF высокая полимеризация в парах и жидком состоянии хорошо известна и изучена. На сходство указывают также близкие по значениям аномалии температур плавления и кипения NH₃ и HF, которые сравнительно мало различаются между собой, но сильно отличаются от аналогичных характеристик воды.

Так, например, по температуре плавления аммиак (-77.8°С) обладает даже большей структурной аномалией, чем HF (т. пл. -83°С). Все это, хотя и косвенно, но усиливает высказанное предположение о достаточном сходстве свойств NH₃ и HF (см. также рис. 2, δ), объясняющем приблизительно одинаковую и достаточно высокую ($n \approx 10-14$) степень полимеризации не только жидкого HF (при -83°С), но и жидкого NH₃ (при -77.8°С), хотя полимеры NH₃ менее прочны из-за существенно более слабых водородных связей.

При переходе к воде обращает на себя внимание очень высокая реальная степень полимеризациии «талой воды» ($n \approx 20-25$), которая может быть объяснена [8] образованием (при переходе от жидкого состояния к кристаллическому) полиэдрических форм полимеров-пентагондодекаэдров и пентагондодекагексагондиэдров, в каждой из вершин которых предположительно располагаются атомы кислорода молекул воды. Из анализа моделей полиэдров легко получается любая композиция значений *n* от 20 до 24, характеризующая молекулярную структуру «талой воды».

Используя эти гипотетические структуры, следует вспомнить об известных молекулярных соединениях – гидратах газов, имеющих в своем большинстве состав X·5.75 H₂O [8] и характеризующихся вышеприведенной полиэдрической формой. Дробный коэффициент в этой формуле – дань стремлению к упрощению (из расчета на 1 моль вещества X). Избавиться от этой дроби можно, введя коэффициент 4. В этом случае получаем 4X·23 H₂O, т. е.

Рис. 2. Корреляционная взаимосвязь. - іначений энергии ($E_{\rm s.c.}$ I) и энтропии II) разрыва водородной связи в бразных водородистых соединенисментов II периода; δ – значений стриных объемов соединений ЭН_m в сповательности элементов II перио-

суперпозицию из двух форм полиэдра, внутри которого располагаются четыре молекулы Х. Можно предположить, что подобное соединение может образоваться и на базе «осколочных» молекул воды, т. е. 4 H₂O·23 H₂O – это, по-видимому, разумный состав полиэдра «талой воды», а лед в рамках этой модели может характеризоваться «пустотелой» (при P 1 атм) формой полиэдра с молекулярной массой $M_L = 23 \cdot 18/4 = 103.5$. «Талой воде» по этой модели должна соответствовать молекулярная масса $M_W = (1 + 5.75) \cdot 18 = 121.5$, что отвечает предельной емкости клатратного полиэдра при стандартных условиях.

Реальной же (равновесной) емкости будет отвечать молекулярная масса M'_{W} , которую можно вычислить из соотношения $\rho_{\text{воды}}/\rho_{\text{льда}} = 1/0.94 =$ = $M'_{W}/M_{L} = M'_{W}/103.5$, откуда $M'_{W} = 103.5/0.94 =$ = 110.1.

В этом случае клатратной структуре «талой воды» будет соответствовать «степень заполнения» «осколочными» молекулами воды, равная (110.1 – – 103.5)/18 = 0.37, а это означает, что некоторая равновесная клатратная формула «талой воды» при P 1 атм и 273 К, возможно, имеет вид [0.37 H₂O]· [5.75 H₂O]. Из этого следует, что каждый полиэдр «талой воды» может содержать в среднем ~1.5 молекулы «осколочной» воды, т. е. [1.5 H₂O]·[23 H₂O].

По-видимому, возможно и дальнейшее заполнение клатратных полиэдров «талой воды», а также полиэдров льда, но только в результате существенного увеличения давления. В литературе [8] отмечается, что при высоких давлениях, вплоть до 25000 атм, получены многочисленные модификации льда с плотностью до 1.5 г/см³, что в модельном плане может соответствовать клатратной форме [14 H₂O]· [23 H₂O], хотя при таком большом отклонении от стандартных условий модель вряд ли можно считать надежной.

Чрезвычайно интересным в проблеме водородной связи является вопрос о диссипации энергии, связанной, в частности, с изменением степени полимеризации молекул H₂O.

Как уже отмечалось, в начальной стадии полимеризации (от n = 2 до 5) можно ожидать линейного развития цепи, в этих пределах координационное число атомов кислорода увеличивается от 2.5 до 3, а энергия водородных связей $E_{\rm B,c}$ – от 10 до 20 кДж, как это показано на графике (рис. 3).

Предполагается, что пятичленный полимер замыкается в кольцо и далее полимеризация осуществляется «блоками». Из рис. 3 видно, что при образовании полиэдра из 20 H₂O (или 24 H₂O) удельное

Рис. 3. Корреляционная взаимосвязь значений $E_{\rm B,c}$ (энергии водородной связи в воде) и L (числа водородных связей в расчете на 1 моль H₂O) со значениями 1/n (обратной степени полимеризации).

значение $E_{\rm B,c}$ (отнесенное к 1 молю H₂O) становится равным 30 кДж, а при кристаллизации льда алмазоподобной структуры значение $E_{\rm B,c}$ достигает 40 кДж. Приведенный пример означает, что образование полиэдров в качестве предпоследней ступени перед кристаллизацией энергетически выгодно, т. е. рассматриваемая полиэдрическая модель энергетически оправдана.

В заключение отметим, что приведенные в табл. 1 и 3 результаты оценок $E_{\rm b.c}$ и $\Delta S^0_{\rm b.c}$ всех водородистых соединений элементов II периода периодической системы положены в основу корреляционного графика (рис. 2, *a*), из которого следует, что при переходе от гидрида бора ВН₃ к карбиду водорода СН₄ резко изменяется характер корреляции: от крутого положительного подъема значений $E_{\rm b.c}$ и $\Delta S^0_{\rm b.c}$ для LiH, BeH₂, BH₃ к отрицательному наклону в ряду CH₄, NH₃, H₂O и HF. Правильнее было бы квалифицировать это как разрыв непрерывности между ВН₃ и CH₄, связанный с изменением природы связи в этих соединениях (BH₃ – гидрид бора, CH₄ – карбид водорода).

На рис. 2, б приведена корреляционная взаимосвязь значений молярных объемов всех водородных соединений в ряду элементов II периода. Из графика следует, что имеет место монотонный подъем корреляционной кривой от LiH до CH₄, а между СН. в NH₃ наблюдается резкий спад, похожий на звоыв непрерывности. Это в сравнении с рис. 2, *а* петельствует о том, что CH₄ не принадлежит по природе ни к семейству NH₃−HF, ни к семей-LiH−BH₃, занимая особое положение и являясь начальником соединений перкарбидной химии.

Список литературы

эрапетьянц М.Х., Карапетьянц М.Л. Основные термодиэмические константы неорганических и органических спеств. М.: Химия, 1968.

- [2] Новиков Г.И. Основы общей химии. М.: ВШ, 1988. С. 350– 359.
- [3] Новиков Г.И. // ЖОХ. 1999. Т. 69. Вып. 9. С. 1409.
- [4] Новиков Г.И. // Весці НАН РБ. Сер. хім. н. 1999. № 1. С. 37.
- [5] Некрасов Б.В. Основы общей химии. М.: Химия, 1965. Т. 1. С. 138.
- [6] Термические константы веществ (таблицы принятых значений). М.: Наука, 1965. Вып. III. С. 18; вып. IV. С.12.
- [7] Термические константы неорганических веществ. М.; Л.: Изд. АН СССР. 1949. С. 382, 368, 354, 353, 650, 658, 780, 784, 788.
- [8] Полинг Л. Общая химия. М.: Мир, 1974. С. 374.