Y.1K 621.318.1

НАМАГНИЧЕННОСТЬ, МАГНИТНАЯ ВОСПРИИМЧИВОСТЬ, ЭФФЕКТИВНЫЙ МАГНИТНЫЙ МОМЕНТ ИОНОВ Fe³⁺ В ФЕРРИТЕ Bi₂Fe₄O₉

© 2013 г. А. А. Затюпо*, Л. А. Башкиров*, И. О. Троянчук**, Г. С. Петров*, А. И. Галяс**, Л. С. Лобановский**, С. В. Труханов**, И. М. Сирота***

*Белорусский государственный технологический университет, Минск

*Научно-практический центр Национальной академии наук Беларуси по материаловедению, Минск

*** Институт проблем управления Российской академии наук, Москва

e-mail: zatsiupa@mail.ru

Поступила в редакцию 26.07.2012 г.

Твердофазным методом получен феррит $Bi_2Fe_4O_9$ с параметрами орторомбической кристаллической решетки a = 7.9595 Å, b = 8.4297 Å, c = 5.9912 Å, V = 401.987 Å³. Полученная в интервале 5–950 К температурная зависимость молярной магнитной восприимчивости позволила установить, что $Bi_2Fe_4O_9$ является антиферромагнетиком, температура Нееля которого равна 258 К. В интервале 280–750 К молярная магнитная восприимчивость изменяется по закону Кюри–Вейсса, что позволило определить

постоянную Вейсса ($\Theta = -1468$ K) и эффективный магнитный момент ионов Fe³⁺ ($\mu_{5\Phi}^{Fe^{3+}} = 6.37 \mu_B$). Измерения полевых зависимостей намагниченности не выявили магнитного гистерезиса, что указывает на отсутствие в образце Bi₂Fe₄O₉ слабого ферромагнетизма.

DOI: 10.7868/S0002337X13060201

ВВЕДЕНИЕ

Феррит висмута $Bi_2Fe_4O_9$ является перспективным катализатором окисления аммиака до NO, хорошим фотокатализатором разложения вредных органических соединений в воде и на воздухе, а также материалом для изготовления химических сенсоров газов [1–4].

В последнее десятилетие значительно увеличился интерес к исследованию каталитических и магнитных свойств $Bi_2Fe_4O_9$ [5–7]. Это связано с тем, что он часто является примесной фазой в образцах феррита висмута $BiFeO_3$ со структурой перовскита [8–10], являющегося в настоящее время самым перспективным сегнетомагнетиком. В $BiFeO_3$ при комнатной температуре одновременно наблюдается магнитное и электрическое упорядочение спинов и электрических диполей [11–14], что позволяет разрабатывать принципиально новые электронные устройства, в том числе устройства записи и считывания информации.

Установлено, что $Bi_2Fe_4O_9$, как и феррит висмута $BiFeO_3$, является антиферромагнетиком. При этом в ряде работ [2, 3, 7] показано, что в $Bi_2Fe_4O_9$, наряду с антиферромагнитным упорядочением спинов ионов Fe^{3+} , наблюдается слабый ферромагнетизм, который в основном характерен для наноразмерных кристаллов этого феррита. В [15, 16] слабый ферромагнетизм в Bi₂Fe₄O₉, полученном гидротермальным методом, не обнаружен.

Цель данной работы — исследование в интервале температур 5—950 К магнитной восприимчивости в магнитном поле 0.86 Тл, намагниченности при температурах 5 и 300 К в полях до 10 Тл феррита Bi₂Fe₄O₉ и определение эффективного магнитного момента ионов Fe³⁺ в этом соединении.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

 $Bi_2Fe_4O_9$ синтезировали методом твердофазных реакций из оксидов Bi_2O_3 , Fe_2O_3 ("ч.д.а."). Порошки исходных соединений, взятые в заданном молярном соотношении, смешивали и мололи в течение 30 мин в планетарной мельнице Pulverizette 6 с добавлением этанола. Полученную шихту прессовали под давлением 50–75 МПа в таблетки диаметром 25 и высотой 5–7 мм и затем обжигали при 1070 К на воздухе в течение 4 ч. После предварительного обжига таблетки дробили, перемалывали, прессовали в бруски длиной 30 мм и сечением 5×5 мм и обжигали при 1070 К на воздухе в течение 4 ч.

Дифрактограммы получали на дифрактометре D8 ADVANCE с использованием Cu K_{α} -излучения. Параметры кристаллической решетки Bi₂Fe₄O₉ определяли при помощи рентгеноструктурного табличного процессора RTP и данных картотеки ICDD JCPDS.

Удельную намагниченность соединения Bi₂Fe₄O₉ при 5 и 300 К в полях до 10 Тл и удельную магнитную восприимчивость в магнитном поле 0.86 Тл в интервале температур 5–300 К измеряли вибрационным методом на универсальной высокополевой измерительной системе (Cryogenic Ltd, London) и мето-

дом Фарадея в интервале температур 77-950 К.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

РФА (рис. 1) показал, что полученный образец Bi₂Fe₄O₉ является однофазным, имеет орторомбическую кристаллическую структуру (пр. гр. *Pbam*) с параметрами решетки a = 7.9595 Å, b == 8.4297 Å, c = 5.9912 Å, V = 401.987 Å³, которые хорошо согласуются с данными [17] (a = 7.9500 Å, b = 8.4280 Å, c = 6.0050 Å, V = 402.35 Å³).

Температурные зависимости удельной намагниченности (σ_{ya}) и молярной магнитной восприимчивости ($\chi_{мол}$) для Bi₂Fe₄O₉, полученные в магнитном поле 0.86 Тл вибрационным методом в интервале температур 5–300 К (рис. 2а) и методом Фарадея в интервале 77–950 К (рис. 2б), хорошо согласуются между собой. Температурные зависимости σ_{ya} и $\chi_{мол}$ для Bi₂Fe₄O₉ имеют максимум, наиболее выраженный на зависимостях, полученных в интервале 77–950 К (рис. 26).

Температура, отвечающая максимуму этих зависимостей, полученных в интервалах 5-300 и 77-950 К, составляет 258 К и отвечает температуре Нееля (T_N), при которой Bi₂Fe₄O₉ переходит из антиферромагнитного состояния в парамагнитное. Это значение T_N практически совпадает с величиной, определенной в [7, 18] ($T_N = 260$ K) для поликристаллических образцов Bi₂Fe₄O₉, и на 20 К выше, чем значение для монокристалла Bi₂Fe₄O₉, исследованного [19] ($T_N = 238$ K). Температурные зависимости σ_{уд} и $\chi_{мол}$ для Bi₂Fe₄O₉ при нагревании и охлаждении совпадают при температурах 650—900 К (значительно выше T_N) и различаются в интервале 258-650 К (рис. 26). В интервале температур 5-300 К зависимости $\chi_{мол}$ (χ_{ya}) от температуры подобны аналогичным зависимостям, приведенным в [7, 18, 20]. При этом следует отметить, что зависимость $\chi_{mod}(T)$, полученная для монокристалла Bi₂Fe₄O₉ для случая, когда направление магнитного поля H = 0.1 Тл перпендикулярно оси кристалла с [18], хорошо согласуется с нашими данными. Например, максимальные значения χ_{мол} при T_N , полученные нами и в работе [18], равны 10.58×10^{-3} Гс см³/моль и 10.2×10^{-3} э.м.е./моль соответственно. Значения $\chi_{\text{мол}}$ при $T \rightarrow 0$ К, полученные на основе наших данных и работы [18], равны 7.52 × 10⁻³ Гс см³/моль и 7.2 × 10⁻³ э.м.е./моль соот-

Рис. 1. Дифрактограмма феррита Bi₂Fe₄O₉.

ветственно. Для поликристаллического образца (порошка) одноосного антиферромагнетика магнитная восприимчивость определяется выражением $\chi_{поликр} = (\chi_{\parallel} + 2\chi_{\perp})/3$ [21, 22], где χ_{\parallel} и χ_{\perp} – магнитная восприимчивость при параллельной и перпендикулярной взаимной ориентации внешнего поля и направления вектора спонтанной намагниченности. Установлено [22], что при T = 0 К магнитная восприимчивость $\chi_{\parallel} = 0$, а χ_{\perp} не зависит от температуры и равняется $\chi_{мол, T_N}$ при T_N . Отсюда следует, что при T = 0 К

$$\chi_{\text{мол, поликрист, } T=0 \text{ K}} = \frac{2}{3} \chi_{\text{мол, } T_N},$$

т.е.

 $\frac{\chi_{\text{мол, поликрист, } T=0 \text{ K}}{\chi_{\text{мол, } T_{\text{M}}}} = \frac{2}{3}.$

Отношения

 $\chi_{MOЛ, T_N}$

рассчитанные с использованием соответствующих величин, полученных нами и в [18], оказались равными 0.71 и 0.70 соответственно, т.е. практически равны и отличаются незначительно от теоретического значения 2/3.

Зависимость $1/\chi_{mon}(T)$ для Bi₂Fe₄O₉ (рис. 3) является линейной в интервале температур 280—750 К, что свидетельствует о выполнении закона Кюри— Вейсса, согласно которому температурная зависимость молярной магнитной восприимчивости описывается уравнением

$$\chi_{\text{MOT}} = \frac{C_{\text{M}}}{T - \Theta},$$
 (1)

где $C_{\rm M}$ — молярная постоянная Кюри, Θ — постоянная Вейсса (парамагнитная температура Кюри).

Измерения выполнены в Научно-практическом центре НАН Беларуси по материаловедению.

Рис. 2. Температурные зависимости удельной намагниченности (1) и молярной магнитной восприимчивости (2) феррита Bi₂Fe₄O₉ в интервалах температур 5–300 (а) и 77–950 К (б).

Рис. 3. Температурные зависимости обратной величины молярной магнитной восприимчивости для Bi₂Fe₄O₉ в интервалах температур 77–950 и 5–30 К (вставка).

Для интервала температур 280—750 К методом наименьших квадратов получено уравнение линейной зависимости 1/ $\chi_{мол}(T)$:

$$1/\chi_{MOM} = a + bT$$
,

по коэффициентам *a* и *b* которого рассчитаны величины молярной постоянной Кюри $C_{\rm M} =$ = 20.325 см³ К/моль и постоянной Вейсса $\Theta =$ = -1468 К, величина которой практически равна значению $\Theta = -1433.7$ К, определенному в [20] для наноразмерных кристаллов Bi₂Fe₄O₉. Величина и отрицательный знак постоянной Вейсса значение отношения $\frac{|\Theta|}{T_N} = 5.7$ хорошо согласуются с отношением значений этих параметров Bi₂Fe₄O₉, полученных авторами [18] ($\Theta = -1670$ K.

$$T_N = 238 \text{ K}, \frac{|\Theta|}{T_N} = 7$$
).

Согласно теории молекулярного поля для двуподрешеточных антиферромагнетиков, велично

Рис. 4. Зависимости намагниченности одной формульной единицы Bi₂Fe₄O₉ от напряженности магнитного поля при температурах 5 (а), 300 К (б). На вставках приведены те же зависимости в поле до 1 Тл.

магнитной восприимчивости при температуре Нееля ($\chi_{MOD,T_{v}}$) определяется уравнением (2) [22]:

$$\chi_{\text{мол},T_N} = \frac{C_u}{T_N - \Theta}.$$
 (2)

Рассчитанная по уравнению (2) ($C_{\rm M}$ = $= 20.325 \,\mathrm{cm}^3 \,\mathrm{K/моль}, \,\Theta = -1468 \,\mathrm{K}$) величина $\chi_{\text{мол,}T_{h'}}$ равна 11.78 × 10⁻³ см³/моль, и она лишь на 12% больше величины $\chi_{\text{мол, }T_N}$, полученной экспериментально (10.58 × 10⁻³ см³/моль). Такое незначительное различие значений χ_{мол, T_N}, полученных экспериментально и рассчитанных по уравнению (2), а также отрицательный знак постоянной Вейсса (парамагнитной температуры Кюри) и ве-= 5.7 указывают на налиличина отношения чие в Bi₂Fe₄O₉ отрицательного обменного взаимодействия, приводящего к антиферромагнитному расположению магнитных моментов двух подрешеток (октаэдрических и тетраэдрических), в которых расположены ионы Fe³⁺.

Эффективный магнитный момент ионов Fe³⁺ в $Bi_2Fe_4O_9$ в интервалах температур выполнения закона Кюри–Вейсса (280–750 К; рис. 3) и (5–30 К; рис. 3, вставка) рассчитан по формуле

$$\mu_{3\Phi}^{\text{Fe}^{\text{J}+}} = 2.828 \sqrt{\frac{C_{\text{M}}}{4}},\tag{3}$$

где 2.828 = $\sqrt{\frac{3k_B}{N_A \mu_B^2}}$ (k_B – постоянная Болымана; N_A – постоянная Авогадро; μ_B – магнетон Бора), $\frac{C_w}{4}$ – молярная постоянная Кюри на один моль ионов Fe³⁺ в Bi₂Fe₄O₉. Установлено, что в интервале температур 280– 750 К эффективный магнитный момент ионов Fe³⁺ ($\mu_{3\phi}^{Fe^{3+}}$) в феррите Bi₂Fe₄O₉ равен 6.37 μ_B . Это значение практически совпадает с величиной $\mu_{3\phi}^{Fe^{3+}} = 6.3(3)\mu_B$, полученной в [18] для поликристаллического образца Bi₂Fe₄O₉ в области температур выше $T_N = 238$ К. Определено, что постоянная Кюри $C_{\rm M}$ для интервала температур 5–30 К

(рис. 3, вставка) равна 18.958 см³ К/моль, а рассчитанный по формуле (3) с использованием этой величины $C_{\rm M}$ эффективный магнитный момент ионов Fe³⁺ в Bi₂Fe₄O₉ равен 6.16µ_B. Полученные значения $\mu_{3\phi}^{\rm Fe^{3+}}$ в Bi₂Fe₄O₉ (6.37µ_B, 6.16µ_B) лишь несколько выше теоретического значения (5.92 µ_B) эффективного магнитного момента свободных ионов Fe³⁺, находящихся в высокоспиновом состоянии, рассчитанного по уравнению

$$\mu_{\Phi}^{\mathrm{Fe}} = \sqrt{n(n+2)},$$

где n = 5 – число неспаренных *3d*-электронов ионов Fe³⁺.

Зависимость намагниченности (n, μ_B) одной формульной единицы Bi₂Fe₄O₉ от напряженности магнитного поля (*H*) при температуре 300 K, которая лежит выше $T_N = 258$ K, является линейной вплоть до 10 Tл (рис. 46), а при температуре 5 K, которая ниже температуры T_N , линейная зависимость намагниченности от поля наблюдается до ~7 Tл. В более высоких полях имеется небольшое отклонение от этой зависимости (рис. 4а).

Заметим, что при изменении знака магнитного поля на обратный петля гистерезиса не наблюдается как в области больших полей, так и малых (рис. 4, вставка). Следовательно, в исследованном образце $Bi_2Fe_4O_9$ отсутствует ферромагнитная составляющая намагниченности, которая, как показано в [2], увеличивается с уменышением размера нанокристаллов $Bi_2Fe_4O_9$ за счет роста ферромагнитных областей на их поверхности.

ЗАКЛЮЧЕНИЕ

Полученный твердофазным методом феррит висмута $Bi_2Fe_4O_9$ имеет орторомбическую структуру с параметрами решетки a = 7.9595 Å, b = 8.4297 Å, c = 5.9912 Å, V = 401.987 Å³.

Анализ температурной зависимости молярной магнитной восприимчивости показал, что феррит $Bi_2Fe_4O_9$ является антиферромагнетиком, температура Нееля которого равна 258 К. В интервале температур 280–750 К молярная магнитная проницаемость изменяется по закону Кюри–Вейсса, что позволило определить постоянную Кюри–Вейсса, что позволило определить постоянную Кюри–Вейсса, что позволило определить постоянную Вейсса ($\Theta = -1468$ К) и эффективный магнитный момент ионов Fe³⁺ ($\mu_{3\phi}^{Fe^*} = 6.37\mu_B$), который отличается незначительно от теоретического значения 5.92 μ_B для ионов Fe³⁺, находящихся в высокоспиновом состоянии.

Полевая зависимость намагниченности $Bi_2Fe_4O_9$ при 300 и 5 К является линейной до 10 и 7 Тл соответственно, и при размагничивании петля гистерезиса не наблюдается, что указывает на отсутствие в исследованном образце $Bi_2Fe_4O_9$ слабого ферромагнетизма.

СПИСОК ЛИТЕРАТУРЫ

- Ruan Q.-J., Zhang W.-D. Tunable Morphology of Bi₂Fe₄O₉ Crystals for Photocatalytic Oxidation // J. Phys. Chem. 2009. V. 113. P. 4168–4173.
- Zhang Q., Gong W., Wang J. et al. Size-Dependent Magnetic, Photoabsorbing, and Photocatalytic Properties of Single-Crystalline Bi₂Fe₄O₉ Semiconductor Nanocrystals // J. Phys. Chem. C. 2011. V. 115. P. 25241– 25246.
- Zhang M., Yang H., Xian T. et al. Polyacrylamide Gel Synthesis and Photocatalytic Performance of Bi₂Fe₄O₉ Nanoparticles // J. Alloys. Compd. 2011. V. 509. P. 809–812.
- Погосян А.С., Абовян Г.В., Арутюнян В.М. и др. Газочувствительные датчики на основе ферритов висмута // Журн. аналит. химии. 1990. Т. 45. Вып. 7. С. 1349–1354.
- Du Y., Cheng Z.X., Dou S.X., Wang X.L. Effect of Chromium Substitution on Structure and Magnetic Properties of Bi₂Fe₄O₉ // Mater. Lett. 2010. V. 64. P. 2251–2254.

- Singh A.K., Kaushik S.D., Kumar B. et al. Substantial Magneto-Electric Coupling near Room Temperature in Bi₂Fe₄O₉ // Appl. Phys. Lett. 2008. V. 92. P. 132910-1–132910-3
- Han J.-T., Huang Y.-H., Jia R.-J. et al. Synthesis and Magnetic Property of Submicron Bi₂Fe₄O₉ // J. Cr. Grow. 2006. V. 294. P. 469–473.
- Bernardo M.S., Jardiel T., Peiteado M. et al. Reaction Pathways in the Solid State Synthesis of Multiferroic BiFeO₃//J. Eur. Ceram. Soc. 2011. V. 31. P. 3047–3053
- Морозов М.И., Ломанова Н.А., Гусаров В.В. Особенности образования BiFeO₃ в смеси оксидов висмута и железа (III) // Журн. обш. химии. 2003. Т. 73 Вып. 11. С. 1772–1776.
- Торопов Н.А., Барзаковский В.П., Лапин В.В., Курцева Н.Н. Диаграммы состояния силикатных систем: Справочник. Вып. 1. Двойные системы. Л. Наука, 1969. 822 с.
- 11. Веневцев Ю.Н., Гагулин В.В., Любимов В.Н. Сегнетомагнетики. М.: Наука, 1982. 224 с.
- 12. Звездин А.К., Пятаков А.П. Фазовые переходы к гигантский магнитоэлектрический эффект в мултиферроиках // УФН. 2004. Т. 174. № 4. С. 465-47
- Catalan G., Scott J.F. Physics and Applications of B muth Ferrite // Adv. Mater. 2009. V. 21. P. 2463–248
- 14. Макоед И.И. Получение и физические свойста мультиферроиков: монография. Брест: БрГУ, 2004 181 с.
- Wang Y., Xu G., Yang L. et al. Low-Temperature Synthesis of Bi₂Fe₄O₉ Nanoparticles Via a Hydrotherma Method // Ceram. Intern. 2009. V. 35. P. 51–53.
- 16. Du Y. Multiferroic Transition Metal Oxides: Structure Magnetic, Ferroelectric and Thermal Properties: Doctor of Philosophy Thesis. University of Wollongong Institute for Superconducting & Electronic Materia 2011. http://ro.uow.edu.au/theses/3247
- Powder Diffraction File. Swarthmore. Joint Commission on Powder Diffraction Standard. Card № 00-025-0050
- Ressouche E., Simonet V., Canals B. et al. Magnetic Fratration in an Iron Based Cairo Pentagonal Lattice Phys. Rev. Lett. 2009. V. 103. P. 26720-4–206720-7
- Iliev M.N., Litvinchuk A.P., Hadjiev V.G. et al. Phone and Magnon Scattering of Antiferromagnetic Bi₂Fe₄O₅ Phys. Rev. B. 2010. V. 81. P. 024302-1–024302-7.
- Park T.-J., Papaefthymiou G.C., Moodenbaugh A.R. C. Synthesis and Characterization of Submicron Single-Crystalline Bi₂Fe₄O₉ Cubes // J. Mater. Chem. 2016 V. 15. P. 2099–2105.
- 21. Карлин Р. Магнетохимия. М.: Мир, 1989. 400 с.
- 22. Кринчик Г.С. Физика магнитных явлений. М.: I =во МГУ, 1976. 367 с.