VIIK 621.318.1

НАМАГНИЧЕННОСТЬ, МАГНИТНАЯ ВОСПРИИМЧИВОСТЬ, ЭФФЕКТИВНЫЙ МАГНИТНЫЙ МОМЕНТ ИОНОВ Fe^{3+} В ФЕРРИТЕ $Bi_2Fe_4O_9$

© 2013 г. А. А. Затюпо*, Л. А. Башкиров*, И. О. Троянчук**, Г. С. Петров*, А. И. Галяс**, Л. С. Лобановский**, С. В. Труханов**, И. М. Сирота***

*Белорусский государственный технологический университет, Минск **Научно-практический центр Национальной академии наук Беларуси по материаловедению, Минск ***Институт проблем управления Российской академии наук, Москва e-mail: zatsiupa@mail.ru Поступила в редакцию 26.07.2012 г.

Твердофазным методом получен феррит $Bi_2Fe_4O_9$ с параметрами орторомбической кристаллической решетки a=7.9595 Å, b=8.4297 Å, c=5.9912 Å, V=401.987 Å 3 . Полученная в интервале 5—950 K температурная зависимость молярной магнитной восприимчивости позволила установить, что $Bi_2Fe_4O_9$ является антиферромагнетиком, температура Нееля которого равна 258 К. В интервале 280—750 К молярная магнитная восприимчивость изменяется по закону Кюри—Вейсса, что позволило определить

постоянную Вейсса ($\Theta=-1468~{\rm K}$) и эффективный магнитный момент ионов Fe³⁺ ($\mu_{\rm 3 ф}^{{\rm Fe}^{3+}}=6.37~\mu_B$). Измерения полевых зависимостей намагниченности не выявили магнитного гистерезиса, что указывает на отсутствие в образце Bi₂Fe₄O₉ слабого ферромагнетизма.

DOI: 10.7868/S0002337X13060201

ВВЕЛЕНИЕ

Феррит висмута $Bi_2Fe_4O_9$ является перспективным катализатором окисления аммиака до NO, хорошим фотокатализатором разложения вредных органических соединений в воде и на воздухе, а также материалом для изготовления химических сенсоров газов [1-4].

В последнее десятилетие значительно увеличился интерес к исследованию каталитических и магнитных свойств $\mathrm{Bi}_2\mathrm{Fe}_4\mathrm{O}_9$ [5–7]. Это связано с тем, что он часто является примесной фазой в образцах феррита висмуга BiFeO_3 со структурой перовскита [8–10], являющегося в настоящее время самым перспективным сегнетомагнетиком. В BiFeO_3 при комнатной температуре одновременно наблюдается магнитное и электрическое упорядочение спинов и электрических диполей [11–14], что позволяет разрабатывать принципиально новые электронные устройства, в том числе устройства записи и считывания информации.

Установлено, что $Bi_2Fe_4O_9$, как и феррит висмута $BiFeO_3$, является антиферромагнетиком. При этом в ряде работ [2, 3, 7] показано, что в $Bi_2Fe_4O_9$, наряду с антиферромагнитным упорядочением спинов ионов Fe^{3+} , наблюдается слабый ферромагнетизм, который в основном характерен для наноразмерных кристаллов этого феррита. В

[15, 16] слабый ферромагнетизм в $Bi_2Fe_4O_9$, полученном гидротермальным методом, не обнаружен.

Цель данной работы — исследование в интервале температур 5—950 К магнитной восприимчивости в магнитном поле 0.86 Тл, намагниченности при температурах 5 и 300 К в полях до 10 Тл феррита $Bi_2Fe_4O_9$ и определение эффективного магнитного момента ионов Fe^{3+} в этом соединении.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

 ${\rm Bi}_2{\rm Fe}_4{\rm O}_9$ синтезировали методом твердофазных реакций из оксидов ${\rm Bi}_2{\rm O}_3$, ${\rm Fe}_2{\rm O}_3$ ("ч.д.а."). Порошки исходных соединений, взятые в заданном молярном соотношении, смешивали и мололи в течение 30 мин в планетарной мельнице Pulverizette 6 с добавлением этанола. Полученную шихту прессовали под давлением 50–75 МПа в таблетки диаметром 25 и высотой 5–7 мм и затем обжигали при 1070 К на воздухе в течение 4 ч. После предварительного обжига таблетки дробили, перемалывали, прессовали в бруски длиной 30 мм и сечением 5 × 5 мм и обжигали при 1070 К на воздухе в течение 4 ч.

Дифрактограммы получали на дифрактометре D8 ADVANCE с использованием CuK_{α} -излучения. Параметры кристаллической решетки $Bi_2Fe_4O_9$ определяли при помощи рентгеноструктурного табличного процессора RTP и данных картотеки ICDD JCPDS.

Удельную намагниченность соединения ${\rm Bi}_2{\rm Fe}_4{\rm O}_9$ при 5 и 300 K в полях до 10 Тл и удельную магнитную восприимчивость в магнитном поле 0.86 Тл в интервале температур 5—300 K измеряли вибрационным методом на универсальной высокополевой измерительной системе (Cryogenic Ltd, London) и методом Фарадея в интервале температур 77—950 K .

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

РФА (рис. 1) показал, что полученный образец $\mathrm{Bi}_2\mathrm{Fe}_4\mathrm{O}_9$ является однофазным, имеет орторомбическую кристаллическую структуру (пр. гр. *Рbam*) с параметрами решетки a=7.9595 Å, b=8.4297 Å, c=5.9912 Å, V=401.987 Å³, которые хорошо согласуются с данными [17] (a=7.9500 Å, b=8.4280 Å, c=6.0050 Å, V=402.35 Å³).

Температурные зависимости удельной намагниченности ($\sigma_{y,l}$) и молярной магнитной воспримичивости ($\chi_{\text{мол}}$) для $Bi_2Fe_4O_9$, полученные в магнитном поле 0.86 Тл вибрационным методом в интервале температур 5—300 К (рис. 2а) и методом Фарадея в интервале 77—950 К (рис. 2б), хорошо согласуются между собой. Температурные зависимости $\sigma_{y,l}$ и $\chi_{\text{мол}}$ для $Bi_2Fe_4O_9$ имеют максимум, наиболее выраженный на зависимостях, полученных в интервале 77—950 К (рис. 2б).

Температура, отвечающая максимуму этих зависимостей, полученных в интервалах 5-300 и 77-950 К, составляет 258 К и отвечает температуре Нееля (T_N) , при которой $Bi_2Fe_4O_9$ переходит из антиферромагнитного состояния в парамагнитное. Это значение T_N практически совпадает с величиной, определенной в [7, 18] ($T_N = 260 \text{ K}$) для поликристаллических образцов Ві₂ Fe₄O₉, и на 20 К выше, чем значение для монокристалла Bi₂Fe₄O₉, исследованного [19] ($T_N = 238 \text{ K}$). Температурные зависимости $\sigma_{yд}$ и $\chi_{мол}$ для $Bi_2Fe_4O_9$ при нагревании и охлаждении совпадают при температурах 650—900 К (значительно выше T_N) и различаются в интервале 258-650 К (рис. 26). В интервале температур 5—300 К зависимости $\chi_{\text{мол}}$ ($\chi_{\text{уд}}$) от температуры подобны аналогичным зависимостям, приведенным в [7, 18, 20]. При этом следует отметить, что зависимость $\chi_{\text{мол}}(T)$, полученная для монокристалла Bi₂Fe₄O₉ для случая, когда направление магнитного поля H = 0.1 Тл перпендикулярно оси кристалла с [18], хорошо согласуется с нашими данными. Например, максимальные значения $\chi_{\text{мол}}$ при T_N , полученные нами и в работе [18], равны 10.58×10^{-3} Гс см³/моль и 10.2×10^{-3} э.м.е./моль соответственно. Значения $\chi_{\text{мол}}$ при $T \rightarrow 0$ K, полученные на основе наших данных и работы [18], равны 7.52×10^{-3} Гс см³/моль и 7.2×10^{-3} э.м.е./моль соот-

Рис. 1. Дифрактограмма феррита Bi₂Fe₄O₉.

ветственно. Для поликристаллического образца (порошка) одноосного антиферромагнетика магнитная восприимчивость определяется выражением $\chi_{\text{поликр}} = (\chi_{\parallel} + 2\chi_{\perp})/3$ [21, 22], где χ_{\parallel} и χ_{\perp} – магнитная восприимчивость при параллельной и перпендикулярной взаимной ориентации внешнего поля и направления вектора спонтанной намагниченности. Установлено [22], что при T=0 К магнитная восприимчивость $\chi_{\parallel}=0$, а χ_{\perp} не зависит от температуры и равняется $\chi_{\text{мол},T_N}$ при T_N . Отсюда следует, что при T=0 К

$$\chi_{\mathsf{мол, поликрист}, T=0\,\mathsf{K}} = rac{2}{3}\chi_{\mathsf{мол, }T_N},$$

т.е.

$$\frac{\chi_{\text{мол, поликрист, }T=0\text{ K}}}{\chi_{\text{мол, }T_N}} = \frac{2}{3}.$$

Отношения

$$\frac{\chi_{\text{мол, поликрист, }T=0\text{ K}}}{\chi_{\text{мол, }T_N}}$$

рассчитанные с использованием соответствующих величин, полученных нами и в [18], оказались равными 0.71 и 0.70 соответственно, т.е. практически равны и отличаются незначительно от теоретического значения 2/3.

Зависимость $1/\chi_{\text{мол}}(7)$ для $\text{Bi}_2\text{Fe}_4\text{O}_9$ (рис. 3) является линейной в интервале температур 280-750 K, что свидетельствует о выполнении закона Кюри—Вейсса, согласно которому температурная зависимость молярной магнитной восприимчивости описывается уравнением

$$\chi_{\text{mort}} = \frac{C_{\text{M}}}{T - \Theta}, \quad (1)$$

где $C_{\rm M}$ — молярная постоянная Кюри, Θ — постоянная Вейсса (парамагнитная температура Кюри).

Измерения выполнены в Научно-практическом центре НАН Беларуси по материаловедению.

Рис. 2. Температурные зависимости удельной намагниченности (1) и молярной магнитной восприимчивости (2) феррита $Bi_2Fe_4O_9$ в интервалах температур 5–300 (a) и 77–950 K (б).

Рис. 3. Температурные зависимости обратной величины молярной магнитной восприимчивости для $Bi_2Fe_4O_9$ в интервалах температур 77-950 и 5-30 K (вставка).

Для интервала температур 280-750 К методом наименьших квадратов получено уравнение линейной зависимости $1/\chi_{\text{мол}}(T)$:

$$1/\chi_{\text{MOЛ}} = a + bT,$$

по коэффициентам a и b которого рассчитаны величины молярной постоянной Кюри $C_{\rm M}=20.325~{\rm cm}^3~{\rm K/моль}$ и постоянной Вейсса $\Theta=-1468~{\rm K}$, величина которой практически равна значению $\Theta=-1433.7~{\rm K}$, определенному в [20] для наноразмерных кристаллов ${\rm Bi}_2{\rm Fe}_4{\rm O}_9$. Величи-

на и отрицательный знак постоянной Вейсса вначение отношения $\frac{|\Theta|}{T_N}=5.7$ хорошо согласуются с отношением значений этих параметров Ві $_2$ Fe $_4$ O $_9$, полученных авторами [18] ($\Theta=-1670$ К $T_N=238$ K, $\frac{|\Theta|}{T}=7$).

Согласно теории молекулярного поля для драгодрешеточных антиферромагнетиков, величина

Рис. 4. Зависимости намагниченности одной формульной единицы $Bi_2Fe_4O_9$ от напряженности магнитного поля при температурах 5 (a), 300 K (б). На вставках приведены те же зависимости в поле до 1 Тл.

магнитной восприимчивости при температуре Нееля ($\chi_{\text{мол.}T_{\text{v}}}$) определяется уравнением (2) [22]:

$$\chi_{\text{мол},T_N} = \frac{C_{\text{м}}}{T_N - \Theta}.$$
 (2)

Рассчитанная по уравнению (2) ($C_{\rm M}=20.325\,{\rm cm}^3$ К/моль, $\Theta=-1468$ К) величина $\chi_{{\rm мол},T_{N}}$ равна $11.78\times 10^{-3}\,{\rm cm}^3$ /моль, и она лишь на 12% больше величины $\chi_{{\rm мол},T_{N}}$, полученной экспериментально ($10.58\times 10^{-3}\,{\rm cm}^3$ /моль). Такое незначительное различие значений $\chi_{{\rm мол},T_{N}}$, полученных экспериментально и рассчитанных по уравнению (2), а также отрицательный знак постоянной Вейсса (парамагнитной температуры Кюри) и ве-

личина отношения $\frac{|\Theta|}{T_N} = 5.7$ указывают на наличие в $\mathrm{Bi}_2\mathrm{Fe}_4\mathrm{O}_9$ отрицательного обменного взаимодействия, приводящего к антиферромагнитному расположению магнитных моментов двух подрешеток (октаэдрических и тетраэдрических), в которых расположены ионы Fe^{3+} .

Эффективный магнитный момент ионов Fe^{3+} в $Bi_2Fe_4O_9$ в интервалах температур выполнения закона Кюри—Вейсса (280—750 K; рис. 3) и (5—30 K; рис. 3, вставка) рассчитан по формуле

$$\mu_{3\Phi}^{\text{Fe}^{3+}} = 2.828 \sqrt{\frac{C_{\text{M}}}{4}},$$
 (3)

где $2.828 = \sqrt{\frac{3k_B}{N_A\mu_B^2}}$ (k_B — постоянная Больцмана; N_A — постоянная Авогадро; μ_B — магнетон Бора), $\frac{C_B}{4}$ — молярная постоянная Кюри на один моль ионов Fe³⁺ в Bi₂Fe₄O₉.

Установлено, что в интервале температур 280— 750 К эффективный магнитный момент ионов ${\rm Fe^{3+}}$ ($\mu_{9\Phi}^{{\rm Fe^{3+}}}$) в феррите ${\rm Bi_2Fe_4O_9}$ равен $6.37\mu_{\it B}$. Это значение практически совпадает с величиной $\mu_{3\phi}^{\text{Fe}^{3}} = 6.3(3)\mu_{B}$, полученной в [18] для поликристаллического образца Bi₂Fe₄O₉ в области температур выше $T_N = 238$ K. Определено, что постоянная Кюри $C_{\rm M}$ для интервала температур 5-30 К (рис. 3, вставка) равна 18.958 см³ К/моль, а рассчитанный по формуле (3) с использованием этой величины $C_{\scriptscriptstyle \rm M}$ эффективный магнитный момент ионов Fe^{3+} в $Bi_2Fe_4O_9$ равен 6.16 μ_B . Полученные значения $\mu_{9\varphi}^{Fe^{3+}}$ в $Bi_2Fe_4O_9$ (6.37 μ_B , 6.16 μ_B) лишь несколько выше теоретического значения (5.92 µв) эффективного магнитного момента свободных ионов Fe³⁺, находящихся в высокоспиновом состоянии, рассчитанного по уравнению

$$\mu_{n\Phi}^{Fe^{-1}} = \sqrt{n(n+2)},$$

где n = 5 — число неспаренных 3d-электронов ионов Fe^{3+} .

Зависимость намагниченности (n, μ_B) одной формульной единицы $\text{Bi}_2\text{Fe}_4\text{O}_9$ от напряженности магнитного поля (H) при температуре 300 K, которая лежит выше $T_N = 258$ K, является линейной вплоть до 10 Тл (рис. 46), а при температуре 5 K, которая ниже температуры T_N , линейная зависимость намагниченности от поля наблюдается до \sim 7 Тл. В более высоких полях имеется небольшое отклонение от этой зависимости (рис. 4а).

Заметим, что при изменении знака магнитного поля на обратный петля гистерезиса не наблюдается как в области больших полей, так и малых (рис. 4, вставка). Следовательно, в исследован-

ном образце $Bi_2Fe_4O_9$ отсутствует ферромагнитная составляющая намагниченности, которая, как показано в [2], увеличивается с уменьшением размера нанокристаллов $Bi_2Fe_4O_9$ за счет роста ферромагнитных областей на их поверхности.

ЗАКЛЮЧЕНИЕ

Полученный твердофазным методом феррит висмута $Bi_2Fe_4O_9$ имеет орторомбическую структуру с параметрами решетки a=7.9595 Å, b=8.4297 Å, c=5.9912 Å, V=401.987 Å³.

Анализ температурной зависимости молярной магнитной восприимчивости показал, что феррит $\mathrm{Bi}_2\mathrm{Fe}_4\mathrm{O}_9$ является антиферромагнетиком, температура Нееля которого равна 258 К. В интервале температур 280—750 К молярная магнитная проницаемость изменяется по закону Кюри—Вейсса, что позволило определить постоянную Кюри (C_{M} = 20.325 см³ К/моль), постоянную Вейсса (Θ = —1468 К) и эффективный магнитный момент ионов Fe^{3+} ($\mu_{3\Phi}^{\mathrm{Fe}}$ = 6.37 μ_B), который отличается незначительно от теоретического значения 5.92 μ_B для ионов Fe^{3+} , находящихся в высокоспиновом состоянии.

Полевая зависимость намагниченности $Bi_2Fe_4O_9$ при 300 и 5 К является линейной до 10 и 7 Тл соответственно, и при размагничивании петля гистерезиса не наблюдается, что указывает на отсутствие в исследованном образце $Bi_2Fe_4O_9$ слабого ферромагнетизма.

СПИСОК ЛИТЕРАТУРЫ

- 1. Ruan Q.-J., Zhang W.-D. Tunable Morphology of Bi₂Fe₄O₉ Crystals for Photocatalytic Oxidation // J. Phys. Chem. 2009. V. 113. P. 4168–4173.
- Zhang Q., Gong W., Wang J. et al. Size-Dependent Magnetic, Photoabsorbing, and Photocatalytic Properties of Single-Crystalline Bi₂Fe₄O₉ Semiconductor Nanocrystals // J. Phys. Chem. C. 2011. V. 115. P. 25241–25246.
- 3. Zhang M., Yang H., Xian T. et al. Polyacrylamide Gel Synthesis and Photocatalytic Performance of Bi₂Fe₄O₉ Nanoparticles // J. Alloys. Compd. 2011. V. 509. P. 809–812.
- Погосян А.С., Абовян Г.В., Арутнонян В.М. и др. Газочувствительные датчики на основе ферритов висмута // Журн. аналит. химии. 1990. Т. 45. Вып. 7. С. 1349—1354.
- 5. Du Y., Cheng Z.X., Dou S.X., Wang X.L. Effect of Chromium Substitution on Structure and Magnetic Properties of Bi₂Fe₄O₉ // Mater. Lett. 2010. V. 64. P. 2251–2254.

- 6. Singh A.K., Kaushik S.D., Kumar B. et al. Substantial Magneto-Electric Coupling near Room Temperature in Bi₂Fe₄O₉ // Appl. Phys. Lett. 2008. V. 92. P. 132910-1-132910-3
- Han J.-T., Huang Y.-H., Jia R.-J. et al. Synthesis and Magnetic Property of Submicron Bi₂Fe₄O₉ // J. Cr. Grow. 2006. V. 294. P. 469–473.
- 8. Bernardo M.S., Jardiel T., Peiteado M. et al. Reaction Pathways in the Solid State Synthesis of Multiferroic BiFeO₃//J. Eur. Ceram. Soc. 2011. V. 31. P. 3047–3053
- Морозов М.И., Ломанова Н.А., Гусаров В.В. Особенности образования ВіFeO₃ в смеси оксидов висмута и железа (III) // Журн. общ. химии. 2003. Т. 73 Вып. 11. С. 1772—1776.
- 10. Торопов Н.А., Барзаковский В.П., Лапин В.В., Курцева Н.Н. Диаграммы состояния силикатных систем: Справочник. Вып. 1. Двойные системы. Ла Наука, 1969. 822 с.
- 11. Веневцев Ю.Н., Гагулин В.В., Любимов В.Н. Сегнетомагнетики. М.: Наука, 1982. 224 с.
- 12. *Звездин А.К., Пятаков А.П.* Фазовые переходы и гигантский магнитоэлектрический эффект в мультиферроиках // УФН. 2004. Т. 174. № 4. С. 465—470
- 13. Catalan G., Scott J.F. Physics and Applications of Burnth Ferrite // Adv. Mater. 2009. V. 21. P. 2463–24x
- 14. *Макоед И.И.* Получение и физические свойстым мультиферроиков: монография. Брест: БрГУ, 2009—181 с.
- 15. Wang Y., Xu G., Yang L. et al. Low-Temperature Sythesis of Bi₂Fe₄O₉ Nanoparticles Via a Hydrotherm Method // Ceram. Intern. 2009. V. 35. P. 51–53.
- Du Y. Multiferroic Transition Metal Oxides: Structure Magnetic, Ferroelectric and Thermal Properties: Doctor of Philosophy Thesis. University of Wollongong Institute for Superconducting & Electronic Material 2011. http://ro.uow.edu.au/theses/3247
- Powder Diffraction File. Swarthmore. Joint Committee on Powder Diffraction Standard. Card № 00-025-00-0
- 18. Ressouche E., Simonet V., Canals B. et al. Magnetic Fratration in an Iron Based Cairo Pentagonal Lattice Phys. Rev. Lett. 2009. V. 103. P. 26720-4—206720-7
- 19. *Iliev M.N.*, *Litvinchuk A.P.*, *Hadjiev V.G. et al.* Phoenand Magnon Scattering of Antiferromagnetic Bi₂Fe₄O₆ Phys. Rev. B. 2010. V. 81. P. 024302-1—024302-7.
- 20. Park T.-J., Papaefthymiou G.C., Moodenbaugh A.R. Synthesis and Characterization of Submicron Single-Crystalline Bi₂Fe₄O₉ Cubes // J. Mater. Chem. V. 15. P. 2099–2105.
- 21. Карлин Р. Магнетохимия. М.: Мир, 1989. 400 с.
- 22. *Кринчик Г.С.* Физика магнитных явлений. М.: Нево МГУ, 1976. 367 с.