УДК 634.0.861.16

М. А. Зильберглейт, Т. В. Корнейчик, В. М. Резников

Белорусский технологический институт им. С. М. Кирова

ИССЛЕДОВАНИЕ ПРОЦЕССА ДЕЛИГНИФИКАЦИИ ДРЕВЕСИНЫ ВОДНЫМИ РАСТВОРАМИ УКСУСНОЙ КИСЛОТЫ

10. ХИМИЧЕСКИЙ СОСТАВ УКСУСНОКИСЛЫХ ЛИГНИНОВ

Для полноты характеристики уксуснокислых лигнинов (УКЛ), понимания путей их превращений в процессе варки, выявления возможностей использования в качестве химического сырья необходимы систематические сведения об их групповом, элементном и функциональном составе.

Как показывают данные, приведенные в табл. 1, содержание лигнина Класона в препаратах УКЛ лиственных пород древесины в целом ниже, чем в хвойных, вследствие присутствия в ных кислоторастворимого лигнина. Исследуемые лигнины содержат крайне незначительные количества легкогидролизуемых углеводов (от 0,6 до 1,2%), причем доля уроновых кислот в них составляет 63...79% для УКЛ хвойных и 53...59% для УКЛ лиственных, пентоз 13...20 и 36... 45%, гексоз 6...24 и 0,5...6,5% соответственно. Принято считать, что в малоизмененных препаратах ЛМР, ДЛА соотношение гексоз и пентоз соответствует составу гемицеллюлозной части древесины [1]. Однако ранее было показано, что в препаратах лигнина, выделенных при различных варках древесины, это соотношение меняется [2]. Очевидно, в ходе уксуснокислой варки гидролитическая устойчивость углеводов падает в ряду гексозы ≤ пентозы ≤ уроновые кислоты.

Содержание лигнина Класона в препаратах УКЛ составляет 80... 97%, что близко к его содержанию в щелочном и диоксанлигнинах

СОДЕРЖАНИЕ ЛИГНИНА КЛАСОНА И УГЛЕВОДОВ В ПРЕПАРАТАХ ЛИГНИНА ДРЕВЕСИНЫ РАЗЛИЧНЫХ ПОРОД

Таблица 1

Препарат лигнина*	Общее содер-	Соста			
	жанне легко- гидролизуемых углеводов, %	Гексозы	Пентозы	Уроновые кислоты	Лигили Класона, %
ЛЕ-60	1,18	10,1	19,5	70,4	93,18
ЛЕ-75	0,79	6,3	15,2	78,5	94,00
ЛЕ-90	0,85	17,6	17,6	64,8	90,54
ЛС-60	1,22	8,3	14,7	77,0	90,43
ЛС-75	0,91	6,6	14,3	79,1	92,60
ЛС-90	1,41	24,0	12,7	63.3	90,28
ЛБ-60	0,60	1,2	45,5	53,3	85,40
ЛБ-75	1,21	0,5	42,5	57,10	92,40
ЛБ-90	1,20	0,5	43,3	56,20	80,30
ЛО-60	0,68	5,8	35,4	58,80	87,30
ЛО-75	0,87	0,7	43,0	56,30	97,20
ЛО-90	0,93	6,5	36,5	58,00	87,20

^{*} ЛЕ — лигнин еловой древесины, ЛС — сосновой, ЛБ — березовой, ЛО — осиновой. Цифра в условном обозначении препарата указывает концентрацию варочного реагента в процентах.

Препарат лигнина	Элементный состав, %			Молекуляр-	Степень	Теплота
	С	н	0	Han Macca Co*	ароматич- ности**	сгорания, ккал/кг
ЛЕ-60	66,34	5.87	27,79	175,70	0,57	6412
ЛE-75	67,41	6,18	26,40	171.97	0,57	6629
ЛE-90	65,62	5,81	28,57	178,30	0,56	6315
ЛС-60	67,57	6,59	25,84	170,32	0,56	6778
ЛC-75	68,88	6.50	24,62	168,08	0,58	6889
ЛC-90	67,11	6.46	26,43	173,86	0,56	6687
ЛБ-60	63.00	6,38	30.62	199.08	0,51	6221
ЛБ-75	65.24	6.08	28,68	178,15	0,55	6354
ЛБ-90	62.54	6.20	31,26	199,55	0,51	6113
ЛО-60	64.40	6.06	29,54	193,67	0,54	6266
ЛО-75	69.57	6,48	23,95	177,06	0,58	6956
ЛО-90	64,52	6,41	29,07	191,69	0,53	6393

^{*} Условное элементарное звено.

(ЩЛ, ДЛ). В лигнинах, выделенных 75%-ной уксусной кислотой, со-

держится максимальное количество лигнина Класона.

Из табл. 2 и 3 видно, что содержание углерода в препаратах УКЛ такое же, как в щелочном сульфатном лигнине [3], и несколько выше, чем в диоксанлигнинах [1]. Степень ароматичности уксуснокислых лигнинов, вычисленная по формуле Ван-Кревелена [4], колеблется от 0,56 до 0,58 для хвойных и от 0,51 до 0,55 для лиственных препаратов. Это значение приблизительно на 10% выше, чем для соответствующих ЛМР. Таким образом, в терминах, введенных Ван-Кревеленом, выделенные лигнины обладают более плотной молекулярной упаковкой. Теплота сгорания препаратов УКЛ, ориентировочно оцененная по формуле Менделеева [5], составляет 6100...6900 ккал/кг. Примерно такой же показатель имеет и сульфатный лигнин [6].

Как следует из результатов анализа функциональных групп, уксуснокислые лигнины сосны и ели представляют собой частично деметоксилированные препараты, содержащие 9...11% метоксилов. Лигнины березы и осины содержат 19...20% метоксилов. Вероятно, потеря около 25% метоксилов в лигнинах хвойных происходит вследствие термолиза метильных групп. Образующиеся фенольные гидроксилы окисляются до хинонов, о чем косвенно свидетельствует увеличение числа общих карбонилов у хвойных лигнинов по сравнению с лиственными.

Анализ прочих функциональных групп показывает, что содержание фенольных гидроксилов (4,77 ... 6,80 %) в исследуемых препаратах в

ФУНКЦИОНАЛЬНЫЙ СОСТАВ ПРЕПАРАТОВ УКЛ, %

WARRENGIASIBIBIN COCIAB IIFEITAFATOL 3 ASI, 10						
Препарат лигнина	ОНалиф	ОНфен	OCH ₃	СО	СООН	CH₃C⁄O
ЛЕ-60 ЛЕ-75 ЛЕ-90 ЛС-60 ЛС-75 ЛС-90 ЛБ-75 ЛБ-90 ЛО-60 ЛО-75	3,38 2,00 2,15 3,36 2,02 2,00 3,16 3,18 2,63 3,75 2,37	5,40 4,95 4,92 5,19 5,03 5,14 5,18 6,22 6,80 6,80	11,27 10,65 11,72 9,57 10,64 11,54 20,60 19,97 19,82 20,28 19,95	8,30 7,79 8,63 7,11 7,83 4,23 6,05 5,33 4,40 6,17	3,50 3,60 4,20 5,14 6,10 4,82 5,70 6,00 4,13 3,71 3,98	1,55 1,86 3,48 0,80 1,05 1,46 0,86 1,12 1,66 1,65 2,26
ЛО-90	1,98	6,10	19,18	4,55	4,15	3,46

Таблица 3

^{**} Определена по Ван-Кревелену.

2,0...2,5 раза выше, чем в аналогичных лигнинах Бьёркмана, и несколько выше, чем в диоксанлигнинах.

Одновременно с ростом количества фенольных гидроксилов увеличивается и количество карбонильных групп в лигнине (4,23...6,17% для лыственных и 5,33...8,63% для хвойных УКЛ). Полученные зависимости хорошо укладываются в схему кислотной деструкции лигнина, предложенную Адлером [1], согласно которой гидролиз α-эфирной связи лигнина сопровождается накоплением фенольных и карбонильных групп. В то же время количество алифатических гидроксилов (1,15... 3,75%) значительно ниже их содержания в препаратах ЛМР (8... 10%). Таким образом, процесс выделения УКЛ сопровождается, с одной стороны, накоплением фенольных гидроксильных и карбонильных групп в результате разрыва эфирных связей лигнина, а с другой связыванием алифатических гидроксилов вследствие реакций конденсации.

Содержание фенольных гидроксильных и карбонильных групп в препаратах УКЛ незначительно отличается от их содержания в сульфатных лигнинах. Ввиду того что в нативных лигнинах содержание карбоксильных групп невелико (1,0...1,5%), можно предположить, что процесс выделения УКЛ сопровождается его окислением.

Как показывают полученные данные (см. табл. 3), количество ацетильных групп в препаратах УКЛ незначительно (0,86...3,48%). В работе [7] описан процесс выделения УКЛ, в которых содержание ацетильных групп составляло около 11%. Данные эти весьма сомнительны, так как известно, что водные растворы уксусной кислоты не являются сильными ацетилирующими агентами. Вместе с тем существующая корреляция (см. табл. 3) между количеством ацетильных групп в препаратах УКЛ и концентрацией кислоты подтверждает возможность протекания реакций ацилирования.

Таким образом, делигнификация древесины в растворах уксусной кислоты при повышенных температурах сопровождается расщеплением алкиларильных эфирных связей, конденсацией, отщеплением метоксилов, частичным ацетилированием. Вследствие перечисленных причин УКЛ представляют собой лигнины, сильно измененные по сравнению с нативными.

Анализ карбонильных групп проведен по методу [8, с. 124], карбоксильных групп — по методу [8, с. 67], фенольных групп — по [8, с. 63], общих гидроксильных групп по [8, с. 54], алифатических гидроксилов — по [8, с. 55], метоксильных групп — по [8, с. 16]. Лигнин Класона в препаратах УКЛ определяли в модификации Комарова, углеводы - по [9].

СПИСОК ЛИТЕРАТУРЫ

- 1. Грушников О. П., Елкин В. Л. Достижения и проблемы химии лигнина. М., 1973. ← 296 c.
- 2. Зильберглейт М. А. Исследовние процесса окислительной делигнификации древесины водными растворами органических надкислот: Дис. ... канд. хим. наук. -Минск, 1982. — 145 с.
- 3. Лигнины / Под ред. К. В. Сарканена и К. Х. Людвига; Пер. с англ. М., 1975. —
- 4. Скриган А. И. Процессы превращения древесины и ее химическая переработка. -Минск, 1981. — 208 c.
- 5. Эмирджанов Р. Т. Основы технологических расчетов в нефтепереработке. М.; Л., 1965. — 544 с.
- 6. *Непенин Ю. Н.* Технология целлюлозы. Т. 2. М., 1963. 936 с.
- 7. Химия древесины / Под ред. Э. Уайза и Э. С. Джана; Пер. с англ. М.; Л.,
- 1959. 608 с. 8. Закис Γ . Φ ., Можейко Π . H., Тельшева Γ . M. Методы определения функциональ-
- ных групп лигнина. Рига, 1975. 174 с. 9. Корнейчик Т. В., Боровская Л. А., Зильберглейт М. А. Определение гексоз, пентоз и уроновых кислот в целлюлозных полуфабрикатах. 1. Определение гексоз, пентоз и уроновых кислот с *о*-толуидиновым реагентом // Химия древесины. — 1986. — № 5. — C. 42—45.