СИНТЕЗ И СВОЙСТВА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

VIK 54-165.2+537.31/32+536.413

ВЛИЯНИЕ ДЕФИЦИТА КАТИОНОВ НА СТРУКТУРУ И СВОЙСТВА СЛОИСТОГО ФЕРРОКУПРАТА ЛАНТАНА-БАРИЯ

© 2008 г. А. И. Клындюк, Е. А. Чижова

Белорусский государственный технологический университет, Минск Поступила в редакцию 19.03.2007 г.

Синтезированы катиондефицитные образцы LaBaCuFeO_{5 + δ} и определены параметры их кристаллической структуры, на воздухе в интервале температур 300–1100 К исследованы их термическое расширение, электропроводность и термо-ЭДС. Изученные оксиды, как и LaBaCuFeO_{5 + δ}, являются полупроводниками *p*-типа. Недостаток лантана приводит к увеличению размера элементарной ячейки LaBaCuFeO_{5 + δ} и практически не влияет на его тепло- и электрофизические свойства. Образование катионных вакансий в –[Ba(Cu,Fe)₂O₅]_∞– блоках фазы LaBaCuFeO_{5 + δ} приводит к тетрагональному искажению ее кубической структуры, уменьшению коэффициента термического расширения образцов и их электропроводности, причем последнее обусловлено в основном увеличением энергии переноса носителей заряда – "дырок" – в –(Cu,Fe)O₂– слоях LaBaCuFeO_{5+δ}.

В последние десятилетия большой интерес вызывают слоистые перовскитоподобные оксиды, среди которых сверхпроводящие купраты типа LnBa₂Cu₃O_{7 – δ} (Ln – P3Э), Bi₂Sr₂Ca_{n-1}Cu₂O_{2n+4} и др. [1], магнеторезистивные манганиты LnBaMn₂O_{6 - g} [2] и кобальтиты LnBaCo₂O_{5 + δ} [3], а также феррокупраты LnBaCuFeO_{5 + δ}, в том числе феррокупрат иттрия-бария, впервые описанный в работе [4].

Тетрагональная структура фазы YBaCuFeO_{5 + δ} образована двойными слоями -(Cu, Fe)₂O₅- соединенных вершинами четырехугольных пирамид CuO₅ и FeO₅, ориентированных перпендикулярно оси с; ионы Ba²⁺ находятся внутри этих слоев, а ионы Ү³⁺ – между ними. Удвоение ячейки перовскита происходит за счет упорядочения нонов Ba²⁺ и Y³⁺ вдоль оси с [4]. Из-за статистического распределения близких по размерам катионов La³⁺ и Ba²⁺ $(R_{13^{1+}} = 0.132 \text{ нм}, R_{Ba^{2+}} = 0.160 \text{ нм для K} = 12 [5])$ по А-позициям феррокупрата LaBaCuFeO5 + 8 его структура является почти кубической [6, 7] с параметром перовскитной ячейки $a_p = 0.3924$ нм [6], 0.3923 нм [7]; результаты нейтронографии указывают на то, что при низких температурах (T = 15 K) ячейка LaBaCuFeO5 + 8 орторомбически искажена $(a > b \approx \sqrt{2} a_p, c \approx 2 a_p, a = 0.55586(8), b = 0.55550(9),$ c = 0.78155(2) HM) [7].

Слоистые феррокупраты LnBaCuFeO_{5 + 8} представляют интерес в качестве материалов для катализаторов [8] и полупроводниковых газовых сенсоров [9, 10], при этом улучшения каталитических или сенсорных свойств этих фаз можно добиться путем частичного гетеровалентного замещения катнонов, входящих в их состав. Альтернативным методом регулирования свойств функциональных материалов на основе перовскитов является их самолегирование – направленное создание в них катионной нестехиометрии [11]. Метод основан на способности перовскитов (ABO₃) сохранять свою кристаллическую структуру при образовании до 5–10% катионных вакансий в А- или В-подрешетках [12, 13]. Достоинством метода является то, что настройка свойств функциональных материалов производится без увеличения числа компонентов, входящих в их состав, т.е. без химического усложнения системы.

Ранее нами было установлено, что параметры кристаллической структуры феррокупрата иттрия-бария при образовании в пем до 5% вакансий меди или железа, а также при замещении до 5% меди железом и наоборот слабо изменяются. Электропроводность образцов уменьшается при образовании вакансий в В-подрешетке феррокупрата и возрастает при увеличении соотношения медь : железо в YBaCu_{1+x}Fe_{1-x}O_{5-x/2} [14].

В настоящей работе представлены результаты исследования влияния недостатка катионов на кристаллическую структуру, тепло- (термическое расширение) и электрофизические (электропроводность, термо-ЭДС) свойства слоистого ферро-купрата лантана-бария LaBaCuFeO_{5+δ}.

МЕТОДИКА ЭКСПЕРИМЕНТА

Поронки феррокупратов LaBaCuFeO_{5 + δ}, La_{0.95}BaCuFeO_{5 + δ}, LaBa_{0.95}CuFeO_{5 + δ}, LaBaCu_{0.95}FeO_{5 + δ} и LaBaCuFe_{0.95}O_{5 + δ} получали керамическим методом из La₂O₃ (х. ч.). BaCO₃ (ч.), Fe₂O₃ (ос. ч. 9–2) и CuO (ос. ч. 2–4) на воздухе при T == 1173 K в течение 40 ч. Для изучения термического

Таблица 1. Значения параметров (a, c) и объема (V)элементарной ячейки, а также параметра перовскитной ячейки (a_p) катиондефицитных образцов феррокупрата лантана-бария

Образец	а, нм	с, нм	$V, \times 10^3, \text{ hm}^3$	<i>а_р</i> , нм
LaBaCuFeO _{5.47}	0.3924	-	60.42	0.3924
La _{0.95} BaCuFeO _{5.43}	0.3928	-	60.61	0.3928
LaBa _{0.95} CuFeO _{5.45}	0.3924	0.7803	120.1	0.3916
LaBaCu _{0.95} FeO _{5.44}	0.3925	0.7794	120.1	0.3916
LaBaCuFe _{0.95} O _{5.42}	0.3922	0.7793	119.9	0.3913

расширения, электропроводности и термоэлектродвижущей силы (термо-ЭДС) из полученных порошков прессовали таблетки диаметром 10 мм и толциной 3–5 мм и бруски размером $5 \times 5 \times 30$ мм, которые затем спекали на воздухе при T = 1273 К в течение 5–10 ч.

Рентгенофазовый анализ (РФА) полученных образцов проводили на дифрактометре Bruker D8 XRD (Си K_{α} -излучение). Погрепиность определения параметров элементарной ячейки феррокупратов составляла $\Delta a = \pm 0.0004$ нм, $\Delta c = \pm 0.0008$ им.

ИК-спектры поглощения порошков феррокупратов записывали в таблетированных смесях с KBr (х. ч.) на фурье-спектрометре Nexus фирмы ThermoNicolet в интервале частот 300–1500 см⁻¹. Погрешность определения частот колебаний не превышала ± 2 см⁻¹.

Содержание в образцах избыточного (слабосвязанного) кислорода (δ) определяли посредством нодометрического титрования с точностью $\Delta \delta = \pm 0.01$.

Термическое расширение керамических образцов феррокупратов лантана-бария исследовали на кварцевом дилатометре собственной конструкции с вертикально расположенным кварцевым толкателем на воздухе в интервале температур 300–1100 К в динамическом режиме со средней скоростью нагревания–охлаждения 3–5 К мин⁻¹. Величины коэффициента линейного термического расширения (**КЛТР**. α) образцов рассчитывали из линейных участков зависимостей $\Delta l/l_0 = f(T)$ с погрешностью $\delta(\alpha) \leq \pm 5\%$.

Электропроводность (σ) керамики на основе LaBaCuFeO_{5+ δ} измеряли 4-контактным методом на постоянном токе на воздухе при *T* = 300–1100 К в динамическом режиме со скоростью нагревания и охлаждения 3–5 К мин⁻¹ (опнобка определения электропроводности не превышала 5%). Найденные экспериментально значения электропроводности керамики (σ_{II}) пересчитывали на нулевую пористость ($\sigma_{\Pi=0}$), используя соотношение $\sigma_{\Pi=0} = \sigma_{\Pi} \left(1 + \frac{\Pi}{1 + \Pi^{2/3}} \right)$. предложенное в [15]. Пористость (П) спеченных образцов определяли по формуле $\Pi = \left(1 - \frac{\rho_{3KCH}}{\rho_{pentr}} \right)$, где ρ_{pentr} – рентгенографическая, а ρ_{3KCH} – кажущаяся плотность, определенная по массе и геометрическим размерам образцов. Коэффициент термо-ЭДС (*S*) образцов

определяли относительно серебра в интервале температур 300-1000 К на воздухе в динамическом режиме со скоростью нагревания и охлаждения 3–5 К мин⁻¹ с погрешностью $\delta(S) \le \pm 10\%$. Градиент температур между горячим и холодным концами образца в ходе измерений поддерживали на уровне 20-25 К. Значения энергии активации электропроводности (E_{σ}) и термо-ЭДС (E_{s}) образцов находили из линейных участков зависимостей $\ln(\sigma T) = f(1/T) + S = f(1/T)$ соответственно (коэффициент корреляции $R \ge 0.999$). Перед измерениями электрофизических свойств на поверхности образцов формировали Ад-электроды путем вжигания серебряной пасты при 1073 К в течение 15 мин. Для измерения температуры использовали хромель-алюмелевые термопары.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

После заключительной стадии отжига при 1273 К все полученные в работе образцы феррокупрата лантана-бария были однофазными (в пределах погрепиюсти РФА) и имели перовскитную структуру, соответствующую структуре базовой фазы LaBaCuFeO_{5 + δ} (рис. 1). Согласно данным иодометрии, содержание кислорода в катиондефицитных образцах было близко к таковому для базовой фазы (табл. 1), из чего следует, что образование катионных вакансий в феррокупрате лантана-бария компенсируется возрастанием средней степени окисления В-катионов (меди и железа) (от +2.97 для LaBaCuFeO_{5,47} до +2.99–3.02 для остальных образцов).

Феррокупрат La_{0.95}BaCuFeO_{5.43}, как и фаза LaBaCuFeO_{5.47}, имеет кубическую структуру (рис. 1), причем возникновение катионных вакансий в слоях –LaO_{δ}– приводит к закономерному увеличению размера перовскитной ячейки a_p (табл. 1).

Образование катнонных вакансий в [Ва(Сu, Fe)₂O₅], -блоках феррокупрата LaBaCuFeO_{5 + 8} приводит к тетрагональному искажению его кубической структуры, о чем свидетельствует усложиение вида дифрактограмм катиондефицитных образцов. Так, в частности, в диапазоне углов $2\theta = 46^{\circ}-47^{\circ}$ для этих образцов вместо синглета (200) кубической фазы наблюдается дублет (200)+(004), характерный для слоистых тетрагональных фер-

Рис. I. Порошковая рентгенограмма LaBaCuFeO_{5,47} (1) (CuK_α-излучение). В правой части рисунка: рефлексы (200) для фаз LaBaCuFeO_{5,47} (2), La_{0.95}BaCuFeO_{5,43} (3), (200) и (004) для фаз LaBa_{0.95}CuFeO_{5,45} (4), LaBaCu_{0.95}FeO_{5,44} (5), LaBaCuFe_{0.95}O_{5,42} (6).

рокупратов (рис. 1). Возрастание средней степени окисления В-катионов приводит к сжатию перовскитной ячейки образцов, протекающему преимущественно в направлении, перпендикулярном слоям --(Cu.Fe)O₅--- (табл. 1).

В ИК-спектрах феррокупратов лантана-бария (рис. 2) наблюдаются две выраженные полосы поглощения с экстремумами при 350–360 (v_1) и 560– 600 (v_2) см⁻¹, соответствующие деформационным (v_1) и валентным колебаниям (v_2) связей (Cu, Fe)– О-(Cu, Fe) в их структуре [6, 16]. ИК-спектры образцов LaBaCuFeO_{5.47} и La_{0.95}BaCuFeO_{5.43} практически совпадают, что подтверждает сделанный выше на основании результатов РФА вывод о слабом влиянии дефектности подрешетки лантана на структуру феррокупрата лантана-бария.

Максимум полосы поглощения v_2 для феррокупратов LaBa_{0.95}CuFeO_{5.45}, LaBaCu_{0.95}O_{5.44} и LaBaCuFe_{0.95}O_{5.42} по сравнению с фазой LaBaCuFeO_{5 + 8} последовательно смещается в сторону меньших частот. В ИК-спектрах указанных фаз появляется дополнительная полоса поглощения с максимумом при 650 (v_3) см⁻¹, интенсивность которой возрастает по мере уменьшения содержания кислорода в образцах (рис. 2). Согласно [16], полоса v_3 соответствует валентным колебаниям апикального кислорода связей (Cu, Fe)–O–(Cu, Fe), тогда как полоса v₂ отвечает валентным колебаниям металлкислород в базальных слоях--(Cu,Fe)O₂-. Таким образом, образование катионных вакансий в [Ba(Cu, Fe)₂O₅]...-блоках феррокупрата LaBaCuFeO_{5 + δ} приводит к искажению образующих его структуру полиэдров BO_n (B = Cu, Fe; n = 5, 6) – сжатию этих полиэдров вдоль одного из направлений. Видно, что результаты ИК-спектроскопии и РФА хорошо согласуются между собой и приводят к одним и тем же выводам.

На температурных зависимостях относительного удлинения ($\Delta l/l_0$) для всех исследованных фаз (рис. 3) обнаружена аномалия в виде излома при $T^* = 630-725$ К (табл. 2), связанная с перестройкой их кислородной подрешетки, сопровождающейся выделением из образцов кислорода [6]. Величина T* для В-дефицитных феррокупратов (630-685 К) близка к таковой для базовой фазы LaBaCuFeO_{5 + δ} (650 K), а для А-дефицитных смещена в сторону более высоких температур (720-725 К). Значения α для феррокупратов в высокотемпературной области ($T > T^*$) выше, чем в низкотемпературной ($T < T^{*}$), ввиду того, что при $T > T^{*}$ дополнительный вклад в КЛТР вносит образование кислородных вакансий в структуре LaBaCuFeO5 + 6. Величины КЛТР катиондефицитных феррокупратов лантана-бария в целом меньше, чем для баКЛЫНДЮК, ЧИЖОВА

Рис. 2. ИК-спектры поглощения феррокупратов LaBaCuFeO_{5,47} (1), La_{0.95}BaCuFeO_{5,43} (2), LaBa_{0.95}CuFeO_{5,45} (3), LaBaCu_{0.95}FeO_{5,44} (4), LaBaCuFe_{0.95}O_{5,42} (5).

зовой фазы (табл. 2), что ярче выражено в низкотемпературной области ($T < T^*$) и хорошо согласуется с результатами работы [13], в которой показано, что КЛТР перовскитных твердых растворов La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3 – б} уменьшается при образовании катионных вакансий в их структуре. Следует отметить, что наибольшее влияние на КЛТР феррокупрата лантана-бария оказывает образование вакансий в его В-подрешетке (табл. 2), что хорошо согласуется с результатами РФА и ИК-спектроскопии, согласно которым увеличение энергии металл-кислородных связей наиболее выражено для медь- и железодефицитных образцов (табл. 1, рис. 2).

Как видно из рис. 4, все исследованные феррокупраты, как и исходный LaBaCuFeO_{5 + δ}, являются полупроводниками *p*-типа, характер электропроводности (σ) которых изменяется от полупроводникового ($\partial \sigma / \partial T > 0$) к металлическому ($\partial \sigma / \partial T < 0$), а коэффициент термо-ЭДС (*S*) начинает резко увеличиваться вблизи 750 К, что обусловлено термической диссоциацией этих фаз. на воздухе начинающейся при *T* = 670 К [6].

Рис. 3. Температурные зависимости относительного удлинения феррокупратов LaBaCuFe_{0.95}O_{5 + δ} (*I*), LaBaCu_{0.95}FeO_{5 + δ} (*2*), La_{0.95}BaCuFeO_{5 + δ} (*3*), LaBa_{0.95}CuFeO_{5 + δ} (*4*), LaBaCuFeO_{5 + δ} (*5*). Для наглядности каждая последующая кривая смещена относительно предыдущей вверх на 0.1%.

Как видно из рис. 4а, электропроводность фазы близка К таковой для LaBaCuFeO_{5+ δ}, особенно при повышенных температурах, тогда как величины о остальных катиондефицитных феррокупратов во всем исследованном интервале температур значительно ниже и близки друг к другу. Из полученных результатов следует, что наиболее сильное (и практически одинаковое) влияние на величину электрической проводимости слоистых феррокупратов оказывает образование катионных дефектов (вакансий) в их проводящих [Ва(Си, Fe)₂O₅]₆-блоках. Значения коэффициента термо-ЭДС всех феррокупратов, кроме фазы LaBaCuFe_{0.95}O_{5 + 6}, во всем исследованном интервале температур близки между собой (рис. 4б). Относительно высокие величины S железодефицитного феррокупрата лантана-бария обусловлены, вероятно, наибольшей степенью дефектности его кислородной подрешетки (табл. 1).

Значения энергии активации электропроводности (E_{σ}) катиондефицитных феррокупратов лантана-бария, рассчитанные из линейных участков зависимостей $\ln(\sigma T) = f(1/T)$ (T < 750 K, $\delta = const$), приведены в табл. 2. из которой видно, что образование катионных вакансий в структуре феррокупрата лантана-бария приводит к росту E_{σ} в 1.5–2.5 раза: от 0.065 эВ для LaBaCuFeO_{5+δ} до, например, 0.171 эВ для LaBa_{0.95}CuFeO_{5+δ}. Значения энергии

 v, cm^{-1} феррокупратов CuFeO_{5,43} (2). $boseEeO_{5+\delta}$ (4) $LaBaCuFeO_{5+\delta}$, особенно

582

Образец	$\alpha \times 10^6$, K ⁻¹		T* V	E oD	E sD	E aD
	$(T < T^*)$	$(T^* < T)$	1**, N	Е _б , ЭВ	<i>Еs</i> . ЭВ	E _m , 9B
LaBaCuFeO _{5 + δ}	14.1	20.4	650	0.065	0.020	0.045
La _{0.95} BaCuFeO _{5 + δ}	12.6	20.9	725	0.108	0.026	0.082
LaBa _{0.95} CuFeO _{5 + δ}	14.0	19.2	720	0.171	0.023	0.148
LaBaCu _{0.95} FeO _{5 + δ}	11.0	18.1	685	0.158	0.027	0.131
LaBaCuFe _{0.95} O _{5 + δ}	10.6	16.8	630	0.166	0.028	0.138

Таблица 2. Величины КЛТР (α) и энергий активации процессов электропереноса ($E_{\sigma}, E_{S} = E_{p}, E_{m}$) катиондефицитных образцов феррокупрата лантана-бария

Примечание. $T^* = 630-725$ K.

активации термо-ЭДС (E_s) катиондефицитных феррокупратов лантана-бария составляют 0.023–0.028 эВ, что близко к величине $E_s = 0.020$ эВ базовой фазы LaBaCuFeO_{5 + 6} (табл. 2).

Онисывая электротранспортные свойства слоистых феррокупратов в рамках модели поляронов малого раднуса (**ПМР**) [17], из результатов измерений электропроводности и термо-ЭДС можно определить параметры процессов переноса заряда: энергию возбуждения носителя заряда – ПМР $(E_p, E_p = E_S)$ и энергию активации переноса ПМР $(E_m, E_m = E_{\sigma} - E_p)$. Как видно из приведенных в табл. 2 данных, образование катионных дефектов (вакансий) в структуре LaBaCuFeO_{5 + δ} слабо влияет на величину энергии возбуждения носителей заряда, приводя к значительному (в 2–3 раза) увеличению энергии активации их переноса, нанболее выраженному для образцов с дефектами в проводящих [Ba(Cu,Fe)₂O₅]_∞-блоках.

Таким образом, исследовано влияние дефицита катионов на параметры кристаллической структуры, термическое расширение, электропроводность и термо-ЭДС слоистого перовскитоподобного феррокупрата лантана-бария. Найдено, что недостаток лантана в образцах приводит к увеличению размера элементарной ячейки LaBaCuFeO_{5 + δ} и слабо влияет на его тепло- и электрофизические свойства. Установлено, что образование катионных вакансий в проводящих [Ba(Cu, Fe)₂O₅]_∞-блоках феррокупрата лантана-бария приводит к тетрагональному искажению его кубической структуры, уменьшению коэффициента линейного термического расширения образцов н их электропроводности. Показано, что уменьшение проводимости

Рис. 4. Температурные зависимости электропроводности (а) и термо-ЭДС (б) феррокупратов LaBaCuFeO_{5 + δ} (*I*), La_{0.95}BaCuFeO_{5 + δ} (2), LaBa_{0.95}CuFeO_{5 + δ} (3), LaBaCu_{0.95}FeO_{5 + δ} (4), LaBaCuFe_{0.95}O_{5 + δ} (5).

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 53 № 4 2008

образцов обусловлено главным образом увеличением энергии переноса носителей заряда в слоях – (Cu, Fe)O₂– фазы LaBaCuFeO_{5 + δ}.

Работа выполнена при поддержке Белорусского республиканского фонда фундаментальных исследований (грант X06М-002) и ГКПНИ "Кристаллические и молекулярные структуры" (задание 33).

СПИСОК ЛИТЕРАТУРЫ

- 1. Третьяков Ю.Д., Гудилин Е.А. // Успехи химии. 2000. Т. 69. № 1. С. 3.
- Троянчук И.О., Труханов С. В., Шимчак Г. // Кристаллография. 2002. Т. 47. № 4. С. 716.
- Roy S., Dubenko I.S., Khan M. et al. // Phys. Rev. B. 2005. V. 71. P. 024419.
- 4. Er-Rakho L., Michel C., LaCorre Ph., Raveau B. // J. Solid State Chem. 1988. V. 73. № 2. P. 531.
- Shannon R.D., Prewitt C.T. // Acta Crystallogr. B. 1969.
 V. 25. Pt. 5. P. 946.
- 6. Клындюк А.И., Чижова Е.А. // Неорган. материалы. 2006. Т. 42. № 5. С. 611.

- 7. Pardo H., Ortiz W.A., Araujo-Moreira F.M. et al. // Physica C. 1999. V. 313. P. 105.
- 8. Rentschler T. // Thermochim. Acta. 1996. V. 284. P. 367.
- Klyndziuk A., Petrov G., Kurhan S. et al. // Chem. Sens. 2004. V. 20. Suppl. B. P. 854.
- Клындюк А.И., Чижова Е.А. // Огнеупоры и технич. керамика // Тр. БГТУ. Вып. XIII. Сер. III. Химия и технология неорган. в-в. Мн. 2005. С. 54.
- *Троянчук И.О.* // Физика твердого тела. 2006. Т. 48. № 5. С. 653.
- Кольцова Т.Н., Нипан Г.Д. // Журн. неорган. химин. 1996. Т. 41. № 12. С. 1944.
- Kostogloudis G.Ch., Ftikos Ch. // Solid State Ionics. 1999, V. 126, P. 143.
- 14. Клындюк А.И., Чижова Е.А. // Весці НАН Беларусі. Сер. хім. навук. 2006. № 2. С. 5.
- Tripathi A.K., Lal H.B. // Mater. Res. Bull. 1980. V. 15. № 2. P. 233.
- 16. Atanassova Y.K., Popov V.N., Bogachev G.G. et al. // Phys. Rev. B. 1993. V. 47. № 22. P. 15201.
- Мотт Н., Дэвис Э. Электронные процессы в некристаллических веществах. В 2-х т. Т. 1. М.: Мир, 1982. 368 с.

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ. 2008, том 53, № 4, с. 585-593

СИНТЕЗ И СВОЙСТВА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

УДК 541.11:548.76

ИССЛЕДОВАНИЕ УРАНИЛКАРБОНАТОВ ОДНОВАЛЕНТНЫХ МЕТАЛЛОВ

© 2008 г. Н. Г. Черноруков, А. В. Князев, Е. В. Власова, А. В. Ершова

Нижегородский государственный университет им. Н.И. Лобачевского, Нижний Новгород Поступила в редакцию 23.10.2007 г.

Разработаны оптимальные методики синтеза и исследованы соединения состава $A_{4-m}^{I}B_{m}^{I}[UO_{2}(CO_{3})_{3}] \cdot nH_{2}O$ (A^{I} = Li, Na, K, Rb, Cs, NH₄, Ag, Tl; B^I = Na; m = 0-1; n = 0-6). Методами рентгенографии, прецизионной ИК-спектроскопии и термографии изучены строение данных соединений и процессы их термораспада. Проведено отнесение полос в ИК-спектрах с использованием математического моделирования, основанного на теории малых колебаний. Методом реакционной калориметрии впервые определены стандартные энтальнии образования при 298.15 К.

Соединения состава $A_{4/k}$ [UO₂(CO₃)₃] · nH₂O,

где A^k – одно- и двухвалентные элементы, представляют интерес в связи с их химической систематикой в рамках широкого морфотропного ряда новых соединений урана со слоистым типом структуры [1–6]. Изучение состава, строения и физикохимических свойств этих соединений важно для оптимизации карбонатных технологий переработки урана при реализации различных радиохимических процессов [7].

Основу структуры кристаллических карбонатов урана(VI) с соотношением $UO_2 : CO_3 = 1 : 3$, по данным [1, 8–10], составляет комплекс $UO_2(CO_3)_3^{+-}$, построенный из гексагональной бипирамиды UO_8 с двумя укороченными аксиальными уранкислородными связями и трех треугольных карбонатных групп, расположенных в экваториальной плоскости. Комплексы связаны между собой атомами металлов, а также молекулами воды.

В настоящей работе представлены результаты физико-химического исследования уранилкарбонатов, содержащих щелочные металлы. Данные соединения и процессы с их участием изучены методами рентгенографии, ИК-спектроскопин, термографии и калориметрии.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

При синтезе рассматриваемого класса соединений использовали различные температурные, временные и концентрационные режимы для кристаллизации из раствора соединений заданного состава. Однако на последней стадии синтеза соединения после получения пересыщенного водного раствора протекала следующая химическая реакция:

$$(4-m)A^{+}(p-p) + mB^{+}(p-p) +$$
$$+ [UO_{2}(CO_{3})_{3}]^{4}(p-p) + nH_{2}O(m) \longrightarrow$$
$$\longrightarrow A^{1}_{4-m}B^{1}_{m}[UO_{2}(CO_{3})_{3}] \cdot nH_{2}O(\kappa).$$

Методики синтеза соединений представлены в работах [8–13].

Фазовую индивидуальность полученных соединений контролировали методом рентгенографии. Рентгенограммы соединений и продуктов термораспада записывали на рентгеновском дифрактометре ДРОН-3.0 (СоКа-излучение), ИК-спектры соединений, приготовленных в виде прессованных таблеток с бромидом калия, - на Фурье-спектрометре IFS-113v фирмы Bruker в области 4000-500 см⁻¹. Точность определения максимумов поглощения составляла 0.2-0.5 см⁻¹. Термический анализ проводили на дериватографе системы Паулик, Паулик, Эрдей (скорость нагревания 10 град/мин). Экспериментальный термохимический материал получен с использованием модернизированного калориметра конструкции С.М. Скуратова. Описание и техника эксперимента представлены в [14].

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Согласно результатам химического, гравиметрического и рентгенофазового анализов, состав синтезированных соединений соответствует формулам Li₁[UO₂(CO₂)₂] + 1.5H₂O (I), Na₁[UO₂(CO₂)₂] (II), $K_3Na[UO_3(CO_3)_3]$ (III), $K_1[UO_2(CO_3)_3]$ (IV), $Rb_3Na[UO_2(CO_3)_3]$ (V), $Rb_4[UO_2(CO_3)_3]$ (VI). $Cs_4[UO_5(CO_3)_3] \cdot 6H_5O$ (VII), $Ag_4[UO_5(CO_3)_3]$ (VIII), $Tl_4[UO_2(CO_3)_3]$ (IX), $(NH_4)_4[UO_2(CO_3)_3]$ (X). Kak видно из приведенных формул, для большей части уранилкарбонатов одновалентных катионов характерно образование только безводных фаз. Исключением являются производные лития и цезия.