И.В. Мацукевич¹, В. Фруз²

¹Институт общей и неорганической химии Национальной академии наук Беларуси, ²Институт физической химии Румынской академии

ПОРИСТЫЕ МАТЕРИАЛЫ НА ОСНОВЕ ОКСИДА МАГНИЯ И МЕТАЛЛИЧЕСКИХ НАНОЧАСТИЦ

области свойств Исследования B синтеза И изучения нанокомпозиционных материалов на основе оксидов-носителей и наночастиц металлов начались около десяти лет назад и продолжают набирать свою популярность в настоящее время. Это связано в первую очередь с улучшенными каталитическими свойствами так называемых нуль-валентных металлов, пригодных для очистки водных сред от токсических примесей [1]. Преимущество нанокомпозиционных материалов на основе оксида-носителя и металлических наночастиц в том, что они могут одновременно выполнять две функции – функции сорбента и катализатора. Синергия химических и физикохимических процессов, протекающих при контакте такого материала с очищаемой водной средой, позволяет достичь рекордно высокой степени очистки за очень короткое время контакта. Из-за высокой поверхностной энергии частицы металла агломерируют, что ведет к снижению их реакционной способности и, следовательно, каталитической активности. Использование матрицы-носителя с развитой поверхностью (например, SiO₂ [2], Fe₂O₃ [3], Mg(OH)₂ [4] и др.) позволяет оказывать влияние на рост и уменьшать размер кристаллитов металла.

Для синтеза пористых материалов на основе MgO и металлических наночастиц в качестве матрицы-носителя использовали порошки оксида магния, полученные методом осаждения и глицин-цитрат-нитратным методом по методикам, изложенным в работе [5], а их основные параметры приведены в таблице 1.

В первую очередь проводили синтез ноль-валентных наночастиц металлов методом прямого химического восстановления. Для этого готовили 0,02 М водные растворы нитратов, используя в качестве исходных реактивов $Co(NO_3)_2 \cdot 6H_2O$ (ч.д.а.), $Ni(NO_3)_2 \cdot 6H_2O$ $Fe(NO_3)_3 \cdot 9H_2O$ (Ч.), (ч.д.а.), Cu(NO₃)₂·6H₂O (ч.д.а.). Раствор нитрата помещали в трёхгорлую колбу, в которую через подводной капилляр со шлифом подавался газообразный азот из баллона с азотом высокой чистоты (содержание O₂ составляло не более 0,001 об.%). После пропускания азота в течении 30 минут в колбу из капельной воронки подавали раствор NaBH₄ (ТУ 1-92-162-90, марка А) со скоростью 2-3 мл/мин при постоянном перемешивании на магнитной мешалке IKA C-MAG HS-7, при этом боргидрид натрия брали с 50 %-ым мольным избытком (при объемном соотношении компонентов 1:1). После подачи в реактор всего объема раствора боргидрида натрия к образованной смеси добавляли спиртовую суспензию оксида магния, которую готовили с

использованием 96 %-ого этилового спирта, предварительно обезгаженного продувкой азотом, и с последующей обработкой этой спиртовой суспензии в ультразвуковой ванне с рабочей частотой 17 ± 1,7 кГц в течение 20 мин. Полученную смесь направляли также на ультразвуковую обработку в течении 30 мин, далее фильтровали и сушили на воздухе при температуре 200 °C в течении 3 часов. Затем полученные образцы подвергали тщательному перетиранию.

Рентгенофазовый анализ (РФА) порошков проводили на дифрактометре Bruker D8 XRD Advance (CuK_{α}-излучение). Элементный анализ порошков проводили методом волнодисперсионной рентгеновской флуоресцентной спектроскопии (WDXRF) на спектрометре Rigaku ZSX Primus II, оборудованном рентгеновской трубкой с Rh-анодом мощностью 4,0 кВт. Микроструктуру порошков исследовали при помощи сканирующего электронного микроскопа высокого разрешения Quanta 3D от компании FEG (США).

Таблица 1 – Размеры первичных частиц (t_1), размеры преобладающей фракции вторичных частиц (t_2^{pr}), удельная поверхность (A_{BET}), общий объем пор ($V_{sp \ des}$), средний диаметр пор ($D_{sp \ des}$) и насыпная плотность ($o^{hac.}$, г/см³) оксила магния [5]

Метод получения	t_1 ,	$t_2^{\rm pr}$,	A_{BET} ,	$V_{sp \ des},$	$D_{sp \ des},$	$\rho^{\text{Hac.}}$,				
оксида магния	HM	HM	M^2/Γ	см ³ /г	HM	г/см ³				
Метод осаждения	11	260	124	1,038	35	0,469				
Глицин-цитрат-	12	115	413	0 1 7 3	19	0.068				
нитратный метод	12	110	11,5	0,175	17	0,000				

По результатам РФА установлено, что в случае использования в качестве матрицы-носителя оксида магния, полученного глицин-цитратнитратным методом, композиционные материалы представляли собой слабоокристаллизованный гидроксид магния с примесями металлов и их окислов. В то время как композиты на основе оксида магния, полученного методом осаждения, состояли из основной фазы MgO, фаз соответствующих металлов и их окислов. Полученные данные хорошо согласуется с результатами работы [5], в соответствии с которыми порошки MgO, синтезированные глицин-цитрат-нитратным методом, являются более высокодисперсными по сравнению с порошками оксида магния (таблица 1), полученными методом осаждения, и, следовательно, более реакционноспособными.

Из таблицы 2 видно, что композиционные материалы на основе MgO, полученного методом осаждения, проявляют большую стабильность к окислению кислородом воздуха. В соответствии с результатами РФА и анализа элементного состава пористых материалов на основе оксида магния можно предположить, что индивидуальные наночастицы металлов покрыты оксидной оболочкой.

Образец	Элементный состав, масс. %								
	Mg	0	Fe	Со	Ni	Cu			
MgO″	47,61	52,39							
MgO*	46,50	53,50							
MgO"-Fe	28,34	57,83	13,83						
MgO*-Fe	25,67	60,19	14,14						
MgO"-Co	29,29	55,41		15,30					
MgO*-Co	27,61	60,13		12,27					
MgO"-Ni	33,10	52,87			14,03				
MgO*-Ni	28,72	59,51			11,77				
MgO"-Cu	30,51	51,71				17,78			
MgO*-Cu	29,72	54,72				15,56			
Примечание.									

Таблица 2 – Результаты элементного анализа методом волнодисперсионной рентгеновской флуоресцентной спектроскопии

" – порошок MgO, полученные методом осаждения,

* – порошок MgO, полученные глицин-цитрат-нитратным методом.

На микрофотографиях композиционных материалов MgO"-Cu и MgO*-Си можно рассмотреть наночастицы меди размером 30-60 нм, которые собраны в более крупные агломераты, при этом их размеры практически не зависели от предыстории синтеза матрицы-носителя. Для композитов MgO"-Ni и MgO*-Ni размеры заметно отличались и составляли соответственно около 90 и 120 нм (рисунок).

Рисунок 1 – Электронные микрофотографии оксида магния, полученного методом осаждения (*a*) и глицин-цитрат-нитратным методом (*г*),

а также композиционных материалов на их основе MgO"-Cu (б),

ЛИТЕРАТУРА

1. Fajardo C., Gil-Diaz M., Costa G., Alonso J., Guerrero A.M., Nande M., Lobo M.C., Martin M. Residual impact of aged nZVI on heavy metal-polluted soils // Science of The Total Envir.. – 2015. – Vol. 535. – P. 79–84.

1. Liu W., Ma J., Sun S., Chen K. Gram-grade Cr (VI) adsorption on porous $Fe@SiO_2$ hierarchical microcapsules // J. of Water Process Engineering. – 2016. – Vol. 12. – Vol. 111–119.

2. Lv X., Jiang G., Xue X., Wu D., Sheng T., Sun C., Xu X. Fe0-Fe₃O₄ Nanocomposites Embedded Polyvinyl Alcohol/Sodium Alginate Beads for Chromium (VI) Removal // J. of Haz. Mater. -2013. - Vol. 262. - P. 748–758.

3. Liu M., Wang Y., Chen L., Zhang Y., Lin Zh. $Mg(OH)_2$ Supported Nanoscale Zero Valent Iron Enhancing the Removal of Pb(II) from Aqueous Solution // Appl. Mater. and Int. – 2015. – Vol. 7. – P. 7961–7969.

4. Мацукевич И.В., Крутько Н.П., Овсеенко Л.В., Полховская О.В., Губицкий Д.В., Вашук В.В. Влияние метода получения на адсорбционные свойства наноструктурированного порошка оксида магния // Весці НАН Беларусі. Сер. хім. навук. – 2018. – Т. 54, №3. – С. 281–288.