УДК 621.785.36+537.621.4+546.73+54-165 А.А. Затюпо¹, асп.; Л.А. Башкиров¹, проф., д-р хим Г.С. Петров¹, доц., канд. хим Н.Н. Лубинский², преп., канд. (¹БГТУ, г. Минск; ²«Командно-инженерный институт» МЧС РБ. т. М **ТЕРМИЧЕСКОЕ РАСШИРЕНИЕ, ИК-СПЕКТРЫ** И ЭЛЕКТРОПРОВОДНОСТЬ КОБАЛЬТИТОВ-ГАЛЛАТИ САМАРИЯ SmCo_{1-x}Ga_xO₃

Кобальтиты редкоземельных элементов и твердые раствор их основе со структурой перовскита обладают особыми магните электрическими, электрохимическими, каталитическими и сонтами свойствами и являются перспективными материалами для прического использования в различных областях науки и техники. П зико-химические свойства в значительной степени определяются новым переходом ионов Co³⁺ из низкоспинового ($t_{2a}^{6}e_{a}^{0}$, S=0) в прижуточно- ($t_{2a}^{5}e_{a}^{1}$, S=1) и высокоспиновое состояние ($t_{2a}^{4}e_{a}^{2}$, S=2).

Кроме того, для данных кобальтитов имеет место фазоный ход типа полупроводник – металл, протекающий в довольно полинтервале температур [1]. В работе [2, 3] изучены кристаллоч структура, магнитные и электрические свойства твердых растикобальтитов-галлатов двойных систем NdCoO₃-NdGaO₃, Lat LaGaO₃.

x = 0 (1); 0.3 (2); 0.5 (3); 0.7 (4); 1.0 (5) Рисунок 1 – ИК-спектры образцов системы SmCo_{1-x}Ga_xO₃

Установлено, что в этих системах увеличение степени замещиния парамагнитных ионов Co³⁺ диамагнитными ионами Ga³⁺ приволат к уменьшению аномального поведения температурных зависимостей электропроводности и термического расширения и для обращают

 $n_{1,*}Ga_xO_3$, LaCo_{1-x}Ga_xO₃ при x>0,5 аномалии практически отсутст-В связи с этим целью настоящей работы является изучение ИКпров, термического расширения и электропроводности кобальтипалатов самария двойной системы SmCoO₃-SmGaO₃, в которой подастся магнитное разбавление ионов Co³⁺ диамагнитными иовы Gu³⁺.

Кобальтиты-галлаты самария $SmCo_{1.x}Ga_xO_3$ (x = 0, 0.3, 0.5, 0.7, 0) получали керамическим методом (на воздухе при 1523 K) из ок-

ИК-спектры синтезированных соединений записывали в интериолновых чисел 350-900 см⁻¹ на ИК-Фурье спектрометре NEXUS иплыя THERMO NICOLET. Электропроводность полученных кераических образцов кобальтитов-гадлатов самария измеряли на постоином токе на воздухе в интервале температур 300-1050 К четырехроптиктным методом с использованием серебряных контактов.

Термическое расширение керамических образцов исследованли и воздухе в интервале температур 300–1100 К при помощи кварцевопо дилатометра в динамическом (скорость нагрева и охлаждения 3– к мин⁻¹) режиме.

Анализ ИК-спектров (рисунок 1) образцов кобальтитов-галлатов амария $SmCo_{1-x}Ga_xO_3$ показывает, что полученный ИК-спектр для высоО₃ хорошо согласуется с литературными данными. Он имеет одау полосу поглощения (v_s=583 см⁻¹), обусловленную валентными кополичиями связей Со-О, которая при замещении 30% (x=0,3) ионов Со¹⁴ ионами Ga³⁺ разделяется на две (v_{s-h} и v_{s-l}) (рисунок 2, кривая 2), обусловленные валентными колебаниями связей Со_Г-О и Со_{II}-О соотвстственно. Значения волновых чисел v_{s-h} и v_{s-l}, которые равны соотвстственно 612 и 557 см⁻¹, показывают, что связь Со_Г-О более прочпия, чем Со_{II}-О и межионное расстояние Со_Г-О меньше, чем Со_{II}-О. Уисличение степени замещения x от 0,3 до 0,5 приводит к постепенному смещению частоты полос поглощения v_{s-h} в сторону больших пичений волнового числа (от 612 до 613 см⁻¹), а для полос поглощения v_{s-l} в сторону меньших значений (от 557 до 542 см⁻¹).

ИК-спектр образца при x=0 (рисунок 1, кривая 1) в интервале волновых чисел (495–485 см⁻¹) содержит две полосы поглощения (v_{b-h} и v_{b-l}), обусловленные деформационными колебаниями мостиковой связи Co(Ga)–O–Co(Ga) для Co_I (v_{b-h}) и Co_{II} (v_{b-l}). Для образцов при x≥0,3 (рисунок 1, кривые 2-3) эти две полосы поглощения сливаются в одну, волновое число которой постепенно смещается в сторону меньших значений от 486 см⁻¹ (x=0,3) до 462 см⁻¹ (x=0,7).

Результаты измерения удельной электропроводности (о) образцов кобальтитов-галлатов самария SmCo_{1-x}Ga_xO₃ показали, что удельная электропроводность твердых растворов $SmCo_{1,x}Ga_xO_3$ при унели чении степени замещения x постепенно уменьшается на несколько по рядков (рисунок 2).

Например, при 850 К электропроводность исследованных образцов уменьшается от значения $\sigma = 52,13 \text{ См} \cdot \text{см}^{-1}$ для SmCoO₃ до 0,27 См см⁻¹ для образца с *x*=0,5. Это может быть связано с перески ковым (поляронным) механизмом проводимости (возрастанием оф фекта экранирования ионами Ga³⁺ и уменьшением вероятности пере скока электрона из пары (Co³⁺·e) на соседние ионы кобальта в приотествии ионов галлия.

Величина аномалии (скачка) на температурной зависимости электропроводности для для SmCoO₃ (рисунок 2), обусловленная при сутствием размытого фазового перехода полупроводник-металл н спиновым переходом ионов Co³⁺, постепенно уменьшается с увеличе нием степени замещения x ионов Co³⁺ ионами Ga³⁺ и для обратия SmCo_{0.5}Ga_{0.5}O₃ она практически отсутствует.

Полученные дилатометрическим методом температурные вили симости относительного удлинения $\Delta l/l_0$ образцов SmCo_{1-x}Ga_xO₃ (рис 3) показывают, что линейная зависимость $\Delta l/l_0$ от *T* для всего интервала температур 300–1100 К наблюдается лишь для образцов при x=0,7 и 1,0.

Для образцов при x=0 и 0,5 в данном интервале температур при сутствует 2 или 3 области температур (низко-, промежуточно- и выси котемпературные), в которых $\Delta l/l_0$ от T зависит линейно (рисунок 3)

Анализ полученных результатов (табл.) показывает, что величи на линейного коэффициента термического расширения для низии (α_1) и промежуточных температур (α_2) образцов SmCo_{1-x}Ga_xO₁ при увеличении степени замещения x постепенно уменьшается от 2,95 10 K⁻¹ (α_1), 3,23 · 10 ⁻⁵ K⁻¹ (α_2) для x = 0 до 0,81 · 10 ⁻⁵ K⁻¹ (α_1) для x=1.

Таблица – Средние линейные коэффициенты термического расши рения (а) образцов SmCo_{1-x}Ga_xO₃ в области низких, промежуточных, высокит температур (α_1 , α_2 , α_3 соответственно) и интервалы температур ΔT_1 , ΔT_1 , ΔT_2 , ΔT_3 , ΔT_4 , ΔT_5 для низко-, промежуточно- и высокотемпературных линейных участков висимостей ΔU_{40} от T соответственно

SmCo _{1-x} Ga _x O ₃ при х	$\alpha_1 \cdot 10^5, K^{-1}$	ΔΤ1, Κ	$\alpha_2 \cdot 10^5, K^{-1}$	ΔΤ2, Κ	$\alpha_3 \cdot 10^5$, K ⁻¹	$\Delta T_{\rm th} E$
0	2.95	147	3.23	224	2.00	261
0.5	1.92	500	1.40	112	-	÷
0.7	1.54	708	-	-	-	-
1.0	0,81	708	-		-	

Рисунок 2 - Зависимость In 5 от Т⁻¹ ин образцов SmCo_{1.x}Ga_xO₃ при различных значениях х

Рисунок 3 – Температурная зависимость отпосительного удлинения $\Delta U l_0$ образцов системы SmCo_{1-x}Ga_xO₃ при различных значениях *х*

Полученные результаты измерения электропроводности и термического линейного расширения образцов кобальтитов-галлатов самария SmCo_{1-x}Ga_xO₃ хорошо согласуются с данными, ранее полученными при изучении систем NdCo_{1-x}Ga_xO₃, LaCo_{1-x}Ga_xO₃ [2,3].

ЛИТЕРАТУРА

1 Пальгуев, С. Ф. Высокотемпературные оксидные электронные проводники для электрохимических устройств / С. Ф. Пальгуев, В. К. Гильдерман, В. И. Земцов. – М.: Наука, 1990. – 198 с.

2 Кристаллическая структура и ИК-спектры кобальтитовгаллатов лантана LaCo_{1-x}Ga_xO₃ / Н.Н. Лубинский, Л.А. Башкиров, Г.С. Петров, С.В. Шевченко, И.Н. Кандидатова, М.В. Бушинский // Стекло и керамика – 2009. – № 2. – С.17–20.

З Кристаллическая структура, электропроводность, термо-ЭДС, ИК-спектры кобальтитов-галлатов NdCo_{1-x}Ga_xO₃ / Н.Н. Лубинский, Л.А. Башкиров, С.В. Шевченко, Г.С. Петров, А.В. Сушкевич // Свиридовские чтения: Сб. ст./ Под ред. Т.Н. Воробьевой и др. – Минск: БГУ, 2008. – Вып.4. – С. 78–85.