Как видно из рисунка, результаты различных опытов в пределах погрешности эксперимента согласуются между собой.

Полученные данные, обработанные методом наименьших квадратов, описываются уравнением

Ig PMM pt. ct. = 4,40
$$\pm$$
 0,64 - $\frac{1248 \pm 16}{T}$ (170-400°C).

Основываясь на том, что в исследуемом температурном интервале тригидрид лантана диссощиирует до дигидрида лантана на [2], из зависимости $\lg P = (\frac{1000}{T^{\circ}, K})$ можно рассчитать

термодинамические характеристики процесса диссоциации тригидрида лантана:

$$LaH_{2,98} \rightarrow LaH_{1,98} + 1/2H_2,$$
 (1)

которые соответственно равны: $\Delta H_{T}^{o} = 5,7 \pm 0,06; \Delta S_{T}^{o} = 6,9 \pm 0,1.$

Литература

1. Суворов А.В. Термодинамическая химия парообразного состояния. Л., 1970. 2. Михеева В.И. Гидриды переходных металлов. М., 1960.

УДК 536.7

А.И.Волков, О.Н.Комшилова

ИЗУЧЕНИЕ ДЕГИДРАТАЦИИ ГИДРАТОВ ПОЛИФОСФАТОВ НЕКОТОРЫХ РЗЭ

Полифосфаты иттербия, неодима и лантана были выделены при сливании концентрированных водных растворов соответствующих нитратов и триметафосфата натрия, полученного прокаливанием однозамещенного ортофосфата при 650°С. Осадок промывался дистиллированной водой до pH~6, небольшим количеством этанола и высушивался на воздухе. Химический анализ показал их соответствие следующему формульному составу: Yb (PO₃)₃·5H₂O, Nd (PO₃)₃·3H₂O и La (PO₃)₃·3H₂O.

При тензиметрическом изучении дегидратации кристаллогидрата Yb (PO), 5H₂O установлено, что удаление 2,0 моль

Фосфат Ln	Процесс	$lgK = A - \frac{B}{T}$		ΔH ^O ₂₉₈ ,	∆S ^o ₂₉₈
		Α	В	ккал.моль	э.е. (H ₂ O)
La	(1)	9,46	3020	14,0 ± 3,2	30,3 ± 4,1
	(2)	9,66	3260	15,0 ± 2,1	31,2 ± 3,6
Nd	(1)	9,22	2840	13,2 ± 2,8	29,2 ± 3,8
	(2)	9,46	3190	14,8 ± 2,0	30,3 ± 3,0
Yb	(1)	9,33	2970	13,8 ± 1,9	29,7 ± 3,3
	(2)	9,46	3320	15,5 ± 1,6	30,3 ± 3,1

Табл. 1. Термодинамические характеристики процессов дегидратации

слабосвязанной воды в равновесных условиях при 20-80°С приводит к образованию рентгеноаморфного продукта состава Yb (PO₃)₃• 3H₂O.

Известно сходство процессов термической дегидратации изоморфных кристаллогидратов циклотриполифосфатов лантана, церия и празеодима, поэтому, естественно, следовало ожидать некоторую аналогию в термическом разложении рентгеноаморфных гидратов исследуемых нами полифосфатов: La (PO) ×

х3H₂O, Nd(PO₃)₃·3H₂O и Yb(PO₃)₃·3H₂O.

Нами было установлено, что дегидратация данных гидратов происходит качественно однотипно:

$$[Ln(PO_3)_3 \cdot 3H_2 O] = [Ln(PO_3)_3 \cdot 2H_2 O] + (H_2 O); (1)$$
$$[Ln(PO_3)_3 \cdot 2H_2 O] = [Ln(PO_3)_3] + 2(H_2 O), (2)$$

rge Ln = Yb, Nd, La.

На основании экспериментальных тензиметрических данных и полученных из них логарифмических зависимостей давления пара и констант равновесия от температуры (табл. 1) рассчитаны термодинамические характеристики процессов (1) и (2).

Однако качественно однотипный двухстадийный характер дегидратации исследуемых гидратов имеет определенные особенности. Так, у Yb (PO₃)₃·3H₂O (рис. 1) удаление воды происходит по экспоненциальным зависимостям P = f(T), соответствующим отдельным стадиям дегидратации при 160 – 220°C (удаление 1,0 моль H₂O) и при 200–260°C (удаление еще 2,0 моль H₂O). Термическая дегидратация Nd(PO₃)₃·3H₂O и La (PO₃)₃× × 3H₂O также проходит в две стадии и сопровождается образованием кристаллической структуры соли при удалении 1,0 моль H₂O. Однако первая стадия их дегидратации в отличие от фосфата иттербия протекает по прямолинейной зависимости давления насыщенных паров воды от температуры (рис. 1, 6, в). Отсутствие линий газового расширения паров выделив-

Рис. 1. Зависимости давления пара от температуры над гидратами: Yb (PO₃) 3^{*} *5H₂O (a); Nd (PO₃) 3[•] 3H₂O (б); La (PO₃) 3[•] 3H₂O (в) соответствуют увеличению соотношения m/v, где m – навеска соли, v – объем мембранной камеры. шейся воды между процессами (1) и (2) для $Nd(PO_3)_3^{\times}$ * $3H_2O$ и La $(PO_3)_3^{\circ}3H_2O$ свидетельствует о непрерывном удалении из них гидратной воды. В отличие от $Nd(PO_3)_3^{\times}$ * $3H_2O$ у исходного гидрата фосфата лантана присутствует более значительное количество адсорбированной влаги (до 1,7 и даже 2,3 моль H_2O по отношению к гидратной воде).

Анализ ИК-спектров La (PO₃) 3H₂O и продуктов его частичной дегидратации указывает на наличие более сильных H-связей в структуре по сравнению с фосфатом неодима, что соответствует приведенным термодинамическим характеристикам. Спектры образцов исследуемых фосфатов, полученных при обезвоживании гидратов, содержат полосы поглощения, свойственные полиметафосфатам.

Образующиеся при дегидратации безводные продукты устойчивы в узких температурных интервалах (10-30 С). При более высоких температурах и давлениях (выше 300-400 мм рт. ст) имеет место значительная степень протекания парового гидролиза солей с образованием монофосфатов; скорость гидролиза при этом становится уже сравнимой со временем достижения равновесия в системе.

УДК 546.35

А.Л.Кузьменко, А.А.Малышев, И.Т.Бурая

ВОЛЮМОМЕТРИЧЕСКОЕ ИССЛЕДОВАНИЕ КИНЕТИКИ ТЕРМИЧЕСКОГО РАЗЛОЖЕНИЯ ИОДАТА РУБИДИЯ

Температурная область устойчивости и характер разложения иодата рубидия изучены в работах [1, 5] методами термографии и термогравиметрии. Состав продуктов разложения подтвержден ИК-спектроскопией, рентгенофазовым и химическим анализом. Согласно этим данным, разложение иодата рубидия количественно протекает только по схеме

$$RbIO_3 = RbI + 3/2 O_2$$
. (1)

Авторами [4] изучена диаграмма плавкости и проведен расчет равновесных давлений кислорода в системе RbIO₃-RbI. Термодинамический анализ показал, что иодат рубидия должен