НЕАРГАНІЧНАЯ ХІМІЯ

УДК 549.5:54-165:536.21:536.413:537.31/.32

А. И. КЛЫНДЮК^l, Е. А. ЧИЖОВА^l, А. А. ЗАТЮПО^l, Л. А. БАШКИРОВ^l, В. В. ГУСАРОВ^{2,3}, Е. А. ТУГОВА^{2,3}

СИНТЕЗ, СТРУКТУРА И ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА ТВЕРДЫХ РАСТВОРОВ В КВАЗИБИНАРНОЙ СИСТЕМЕ BiFeO₃-PrCoO₃

¹Белорусский государственный технологический университет, ²Физико-технический институт имени А. Ф. Иоффе РАН, ³Санкт-Петербургский государственный технологический институт (технический университет)

(Поступила в редакцию 21.02.2012)

Перспективной основной для разработки мультиферроиков нового поколения, способных найти широкое применение в различных устройствах магнитоэлектроники и спинтроники [1], является перовскитный феррит висмута BiFeO₃, что обусловлено высокими значениями температур антиферромагнитного ($T_N \approx 643$ K) и сегнетоэлектрического упорядочения ($T_C \approx 1100$ K) [2]. Однако, интенсивность магнитоэлектрических взаимодействий в объемных образцах феррита висмута невелика, так как антиферромагнитная структура BiFeO₃ циклоидально модулирована и несоразмерна его кристаллической структуре. В таких фазах отсутствует линейный магнитоэлектрический эффект, а имеет место только квадратичный, величина которого намного меньше линейного. Разрушение несоразмерной магнитной структуры феррита висмута может быть достигнуто воздействием на него высоких давлений [2], а также путем частичного замещения катионов Fe³⁺ [3] или Bi³⁺ [4] в его структуре.

В настоящей работе изучено влияние одновременного замещения в $BiFeO_3$ висмута празеодимом и железа кобальтом на кристаллическую структуру, тепловое расширение, электропроводность и термо-ЭДС образующихся при этом твердых растворов $Bi_{1-x}Pr_xFe_{1-x}Co_xO_3$.

Керамические образцы состава $\operatorname{Bi}_{1-x}\operatorname{Pr}_x\operatorname{Fe}_{1-x}\operatorname{Co}_x\operatorname{O}_3(0, 0 \le x \le 1, 0)$ получали твердофазным методом из $\operatorname{Bi}_2\operatorname{O}_3(x. \operatorname{u}.)$, $\operatorname{Pr}_6\operatorname{O}_{11}(\operatorname{u}.)$, $\operatorname{Fe}_2\operatorname{O}_3(\operatorname{u}. d. a.)$ и $\operatorname{Co}_3\operatorname{O}_4(\operatorname{u}. d. a.)$ на воздухе в интервале температур 1073–1473 К в течение 11–24 ч (температуру и время обжига увеличивали при повышении степени замещения висмута празеодимом и железа кобальтом). Идентификацию образцов и определение параметров их кристаллической структуры проводили при помощи рентгенофазового анализа (РФА) (рентгеновский дифрактометр Bruker D8 XRD Advance, $\operatorname{CuK}_{\alpha}$ -излучение) и ИК спектроскопии поглощения (Фурье-спектрометр Nexus фирмы «ThermoNicolet»). Кажущуюся плотность образцов ($\rho_{\operatorname{эксп}}$) находили по их массе и геометрическим размерам. Пористость (П) спеченной керамики определяли по формуле $\Pi = (1-\rho_{\operatorname{эксп}}/\rho_{\operatorname{pehr}})\cdot100\%$, где $\rho_{\operatorname{pehr}} -$ рентгенографическая плотность образцов. Тепловое расширение, электропроводность и термо-ЭДС спеченных керамических образцов изучали на воздухе в интервале температур 300–1100 К по методикам, описанным в [5, 6]. Значения электропроводности образцов пересчитывали на нулевую пористость [6, 7]. Значения энергии активации электропроводности (E_A) и термо-ЭДС (E_S) находили из линейных участков зависимостей $\ln(\sigma T) = f(1/T)$ и S = f(1/T).

После заключительной стадии отжига керамика состава $PrCoO_3$ и $Bi_{0,1}Pr_{0,9}Fe_{0,1}Co_{0,9}O_3$ была в пределах погрешности РФА однофазной, а на дифрактограммах остальных образцов наблюдались рефлексы примесных фаз – $Bi_{25}FeO_{39}$ (силленит) и $Bi_2Fe_4O_9$ (муллит), количества которых были максимальны для составов с $0,3 \le x \le 0,5$ (рис. 1, *a*). Полученные нами результаты

Рис. 1. Рентгеновские дифрактограммы (CuK_{α}-излучение) (*a*) и ИК-спектры поглощения (*b*) порошков состава BiFeO₃ (*l*), Bi_{0,9}Pr_{0,1}Fe_{0,9}Co_{0,1}O₃ (*2*), Bi_{0,7}Pr_{0,3}Fe_{0,7}Co_{0,3}O₃ (*3*), Bi_{0,5}Pr_{0,5}Fe_{0,5}Co_{0,5}O₃ (*4*), Bi_{0,3}Pr_{0,7}Fe_{0,3}Co_{0,7}O₃ (*5*), Bi_{0,1}Pr_{0,9}Fe_{0,1}Co_{0,9}O₃ (*b*) и PrCoO₃ (*7*). Примесные фазы Bi₂₅FeO₃₉ и Bi₂Fe₄O₉ обозначены символами (*) и (*) соответственно

согласуются с литературными данными (см., например, [8,9]), согласно которым твердофазным методом образцы перовскитного феррита висмута получить практически невозможно. Ввиду затрудненности диффузии оксида висмута через слой продукта – BiFeO₃ – реакция

$$\operatorname{Bi}_{2}\operatorname{O}_{3,\mathrm{TB}} + \operatorname{Fe}_{2}\operatorname{O}_{3,\mathrm{TB}} = 2\operatorname{BiFeO}_{3,\mathrm{TH}}$$

протекает не до конца: наряду с продуктом реакции – перовскитом $BiFeO_3$ – в реакционной смеси остается некоторое количество полупродуктов – богатого оксидом висмута силленита $Bi_{25}FeO_{39}$ и богатого оксидом железа муллита $Bi_2Fe_4O_9$ [9]. Увеличение времени или температуры отжига не позволяет решить проблему, поскольку приведет либо к обеднению шихты Bi_2O_3 вследствие его ухода в газовую фазу, либо к перитектическому плавлению $BiFeO_3$: образующаяся керамика в обо-их случаях будет обогащаться муллитом ($Bi_2Fe_4O_9$) [8].

Твердые растворы $\operatorname{Bi}_{1-x}\operatorname{Pr}_x\operatorname{Fe}_{1-x}\operatorname{Co}_x\operatorname{O}_3$ при 0,0 < x < 0,7 имели структуру ромбоэдрически искаженного перовскита (структура BiFeO₃, пр. гр. симм. *R3c* [10]), а при $0,7 \le x < 1,0$ – структуру орторомбически искаженного перовскита (структура PrCoO₃, пр. гр. симм. *Pnma* [11]). Таким образом, согласно результатам РФА, морфотропный фазовый переход (изменение структуры образцов от ромбоэдрической к орторомбической: $R \to O$) в системе BiFeO₃–PrCoO₃ протекает в области составов 0,5 < x < 0,7. Как видно из данных, приведенных в таблице, параметры кристаллической структуры твердых растворов Bi_{1-x}Pr_xFe_{1-x}Co_xO₃ закономерно уменьшаются с ростом *x* (для к.ч. = 6 радиусы ионов Bi³⁺, Pr³⁺, Fe³⁺ и Co³⁺ составляют соответственно 0,102 нм, 0,1013, 0,645 и 0,61 нм [12]). Найденные нами параметры кристаллической решетки фаз BiFeO₃ и PrCoO₃ (таблица) хорошо согласуются с литературными данными – для BiFeO₃ (пр. гр. симм. *R3c) a* = 0,558760 нм, *b* = 1,386700 нм [10], а для PrCoO₃ (пр. гр. симм. *Pnma) a* = 0,534030 нм, *b* = 0,757440 нм, *c* = 0,537540 нм [11].

Значения параметров кристаллической структуры *(a, b, c, V)*, а также энергий активации процесса электропереноса (*E*_A, *E*_S, *E*_m) твердых растворов Bi_{1-x}Pr_xFe_{1-x}Co_xO₃

x	Структура	Z	а, нм	<i>b</i> , нм	С, НМ	<i>V</i> , нм ³	<i>Е</i> _{<i>A</i>} , эВ	<i>Е_S</i> , эВ	<i>Е</i> _{<i>m</i>} , эВ
0,0	R(R3c)	6	0,5576(2)	_	1,386(1)	0,3733(5)	0,632(9)	0,422(7)	0,210(16)
0,1	_"_	6	0,5570(4)	_	1,383(1)	0,3714(10)	0,830(12)	0,332(9)	0,498(31)
0,2	_''_	6	0,5528(15)	-	1,362(4)	0,3605(29)	0,791(13)	0,526(19)	0,265(32)
0,3	_"_	6	0,5488(11)	-	1,357(4)	0,3539(23)	0,873(10)	0,555(9)	0,318(19)

Продолжение таблицы

x	Структура	Ζ	а, нм	<i>b</i> , нм	С, НМ	<i>V</i> , нм ³	<i>Е</i> _{<i>A</i>} , эВ	<i>Е</i> _{<i>S</i>} , эВ	<i>Е</i> _{<i>m</i>} , эВ
0,5	R (R3c)	6	0,5471(10)	_	1,348(3)	0,3492(21)	0,796(5)	0,652(11)	0,144(16)
0,7	O (Pnma)	4	0,5416(4)	0,7651(7)	0,5414(7)	0,2245(6)	0,728(6)	0,468(5)	0,260(11)
0,8	_''_	4	0,5392(3)	0,7624(6)	0,5391(6)	0,2216(4)	0,774(8)	0,423(10)	0,351(18)
0,9	_"_	4	0,5369(4)	0,7603(8)	0,5369(7)	0,2192(7)	0,424(12)	0,270(9)	0,154(21)
1,0	_''_	4	0,5353(4)	0,7581(8)	0,5364(7)	0,2177(7)	0,075(3)	0,085(2)	-0,010(5)

На ИК-спектре поглощения BiFeO₃ (рис. 1, б, кривая 1) наблюдались полосы поглощения с экстремумами при 540 см⁻¹ (v₁), 438 см⁻¹ (v₂) и 384 см⁻¹ (v₃), отвечающие колебаниям связей Fe-O (v₁) и Bi-O (v₂ и v₃) в структуре этой фазы; спектр PrCoO₃ (рис. 1, б, кривая 7) содержал полосы поглощения с экстремумами 594 см⁻¹ (v₄), 575 см⁻¹ (v₅), 457 см⁻¹ (v₆) и 347 см⁻¹ (v₇), соответствующие колебаниям связей Со-О (v4 и v5) в структуре перовскитного кобальтита празеодима [13]. Как видно из рис. 1, б, спектры поглощения составов с x≤ 0,5 (кривые 2-4) аналогичны спектру BiFeO₃, а составов с $x \ge 0,7$ (кривые 5, 6) – PrCoO₃. Таким образом, результаты ИК спектроскопии поглощения подтверждают данные РФА о том, что переход $R \rightarrow O$ в системе BiFeO₃–PrCoO₃ происходит при 0.5 < x < 0.7. С ростом *x* полосы поглощения твердых растворов Ві1-, Pr, Fe1-, Co, O3 в целом смещаются в сторону больших волновых чисел, из чего следует, что замещение висмута празеодимом и железа кобальтом приводит к усилению металлкислородных взаимодействий в структуре этих фаз. Положение полосы v₆ в орторомбически искаженных фазах $Bi_{1-x}Pr_xFe_{1-x}Co_xO_3$ остается практически неизменным, а величина $\Delta v = v_4 - v_5$ возрастает от 19 см⁻¹ для x = 1,0 до 59 см⁻¹ для x = 0,7; таким образом, интенсивность взаимодействий Pr(Bi)-О в этих фазах при замещении празеодима висмутом не изменяется, а разница в энергии взаимодействия между анионами кислорода и расположенными в различных кристаллографических позициях катионами кобальта (железа) возрастает при замещении кобальта железом в PrCoO₃.

В отличие от антиферромагнитного феррита висмута, образцы $\text{Bi}_{1-x} \text{Pr}_x \text{Fe}_{1-x} \text{Co}_x \text{O}_3$ (0,1 $\leq x \leq$ 0,3) при комнатной температуре были ферромагнитны; таким образом, частичное замещение железа кобальтом (и висмута празеодимом) в BiFeO₃ приводит к изменению характера магнитных взаимодействий в структуре этого оксида.

Полученные нами материалы $Bi_{1-r}Pr_rFe_{1-r}Co_rO_3$ являлись полупроводниками ($\partial\sigma/\partial T > 0$) *p*-типа (S > 0) (для $x \ge 0,7$ вблизи комнатной температуры – *n*-типа: S < 0), при этом характер проводимости кобальтита празеодима вблизи 850 К изменяется на металлический ($\partial \sigma / \partial T < 0$) (рис. 2, *a*, δ). Электропроводность образцов с ростом *x* увеличивалась, причем величины σ образцов с $0,1 \le x \le 0,5$ были близки, а наиболее резкий рост проводимости керамики наблюдался при x > 0,5 (рис. 2, *г*). Термо-ЭДС керамики немонотонно изменялась с ростом температуры, проходя через максимум, температура которого (T*) возрастала от 460 К для PrCoO₃ до 710 К для BiFeO₃; при этом S образцов Bi_{1-r}Pr_rFe_{1-r}Co_rO₃ (0,8 $\leq x \leq 1,0$) при комнатной температуре являлась отрицательной, изменяя знак на положительный при 340, 380 и 385 К для x = 0.8, 0,9 и 1,0 соответственно (рис. 2, б). Величина термо-ЭДС твердых растворов Bi_{1-x}Pr_xFe_{1-x}Co_xO₃ уменьшалась с ростом x, причем наиболее резко при $x \ge 0,5$, т. е. для орторомбически искаженных фаз Bi_{1-r}Pr_rFe_{1-r}Co_rO₃ с высокой степенью замещения железа кобальтом (и висмута празеодимом) (рис. 2, d). Характер зависимости S = f(T) для исследованных оксидов, а также величина коэффициента термо-ЭДС кобальтита празеодима хорошо согласуются с литературными данными [14]. Возрастание *S* образцов при *T* < *T** обусловлено переходом входящих в их состав катионов кобальта из низкоспинового (HC) в промежуточно- (ПС) и высокоспиновое состояния (BC) [15]; изменение характера температурной зависимости термо-ЭДС феррита висмута вблизи 710 К, вероятно, обусловлено разупорядочением магнитных моментов входящих в его состав катионов Fe³⁺ $(T_N \approx 643 \text{ K [2]})$. Электропроводность и термо-ЭДС исследованных образцов с ростом x изменялись антибатно ($\partial \sigma / \partial x > 0$, $\partial S / \partial x < 0$), что характерно для типичных полупроводников [16].

Для веществ с поляронным характером переноса заряда, к которым относятся изученные в настоящей работе оксиды $Bi_{1-x}Pr_xFe_{1-x}Co_xO_3$, температурные зависимости электропроводности

и термо-ЭДС описываются соотношениями $\sigma = (A/T) \exp(-E_A/kT)$, $S = (k/e) \exp[-(E_S/kT)+B]$, где $E_A = (E_S + E_m)$ и E_S – энергии активации электропроводности и термо-ЭДС, причем E_S отвечает энергии возбуждения полярона, а E_m – энергии его переноса (при безактивационном переносе заряда поляронами большого радиуса (ПБР) $E_m \approx 0$; при $E_m > 0$ перенос заряда термически активирован и осуществляется поляронами малого радиуса (ПМР) по прыжковому механизму) [16]. Как видно из приведенных в таблице значений E_A , E_S и E_m , носителями заряда в PrCoO₃ являются ПБР, а в остальных образцах – ПМР, причем энергия активации их переноса в целом возрастает при уменьшении x. Величина E_S немонотонно изменяется, проходя через максимум при x = 0,5; иначе говоря, энергия возбуждения носителей заряда в исследованных оксидах минимальна для граничных составов – BiFeO₃ и PrCoO₃ – и увеличивается при частичном замещении в этих фазах железа кобальтом, а висмута – празеодимом и наоборот.

Результаты дилатометрических исследований приведены на рис. 2, *e*, *e*. Зависимости $\Delta l/l_0 = f(T)$ для большинства исследованных образцов нелинейны, что обусловлено изменением спинового состояния входящих в их состав катионов Co³⁺, а также изменением характера магнитных взаимодействий в подрешетке железа (кобальта). Значения среднего коэффициента линейного теплового расширения (КЛТР) исследованных оксидов увеличивались с ростом *x* (рис. 2, *e*), что, по всей видимости, обусловлено спиновым вкладом в расширение образцов (увеличением объема элементарной ячейки фаз Bi_{1-x}Pr_xFe_{1-x}Co_xO₃ вследствие переходов Co³⁺_{HC} \rightarrow Co³⁺_{BC}).

Таким образом, в работе синтезирована керамика $\text{Bi}_{1-x} \Pr_x \operatorname{Fe}_{1-x} \operatorname{Co}_x \operatorname{O}_3 (0,0 \le x \le 1,0)$, изучены ее кристаллическая структура и физико-химические свойства. Твердые растворы $\operatorname{Bi}_{1-x} \Pr_x \operatorname{Fe}_{1-x} \operatorname{Co}_x \operatorname{O}_3$ имеют структуру ромбоэдрически $(0,0 \le x \le 0,5)$ или орторомбически $(0,7 \le x \le 1,0)$ искаженного перовскита и являются полупроводниками *p*-типа (для $x \ge 0,7$ вблизи комнатной температуры – *n*-типа); увеличение *x* приводит к уменьшению параметров элементарной ячейки образцов и величины их термо-ЭДС и к повышению электропроводности и среднего КЛТР керамики.

Авторы выражают благодарность В.М. Кононовичу за запись рентгеновских дифрактограмм, Т. И. Баранниковой за запись ИК спектров поглощения, Н. С. Красуцкой и И. В. Мацукевич за помощь при исследовании физико-химических свойств оксидной керамики.

Литература

- 1. Звездин А. К., Пятаков А. П. // УФН. 2004. Т. 174. № 4. С. 465–470.
- 2. Catalan G., Scott J. F. // Adv. Mater. 2009. Vol. 21. P. 2463-2485.
- 3. Kumar A., Yadav K. L. // J. Phys. Chem. Solids. 2011. Vol. 72. P. 1189-1194.
- 4. Troyanchuk I. O., Karpinsky D. V., Bushinsky M. V. et al. // J. Amer. Ceram. Soc. 2011. Vol. 94. N 12. P. 4502-4506.
- 5. Клындюк А. И., Чижова Е. А. // Неорган. материалы. 2006. Т. 42. № 5. С. 611-622.
- 6. Клындюк А. И., Чижова Е. А., Сазанович Н. В., Красуцкая Н. С. // Термоэлектричество. 2009. № 3. С. 76-84.
- 7. Tripathi A. K., Lal H. B. // Mater. Res. Bull. 1980. Vol. 15. N 2. P. 233-242.
- 8. Морозов М. И., Ломанова Н. А., Гусаров В. В. // Журн. общ. химии. 2003. Т. 73. Вып. 11. С. 1772–1776.
- 9. Bernardo M. S., Jardiel T., Peiteado M. et al. // J. Eur. Ceram. Soc. 2011. Vol. 31. P. 3047-3053.
- 10. Moreau J. M., Michel C., Gerson R., James W. J. // J. Phys. Chem. Solids. 1971. Vol. 32. P. 1315-1320.
- 11. Brinks H. W., Fjellvag H., Kjekshus A., Hauback B.C. // J. Solid State Chem. 1999. Vol. 147. P. 464-477.
- 12. Shannon R. D., Prewitt C. T. // Acta Cryst. 1969. Vol. B25. Pt. 5. P. 946-960.
- 13. Kim Y. Y., Lee D. H., Kwon T. Y., Park S. H. // J. Solid State Chem. 1994. Vol. 112. P. 376-380.
- 14. Лубинский Н. Н., Башкиров Л. А., Петров Г. С., Клындюк А. И. // Термоэлектричество. 2009. № 1. С. 48–55.

15. Itoh M., Hashimoto J., Yamaguch I S., Tokura Y. // Physica B. 2000. Vol. 281-282. P. 510-511.

16. Мотт Н., Дэвис Э. Электронные процессы в некристаллических веществах. М.: Мир, 1982.

KLYNDYUK A. I., CHIZHOVA Ye. A., ZATSIUPA A. A., BASHKIROV L. A., GUSAROV V. V., TUGOVA E. A.

SYNTHESIS, STRUCTURE AND PHYSICOCHEMICAL PROPERTIES OF THE SOLID SOLUTIONS IN THE QUASI-BINARY SYSTEM OF BiFeO₃-PrCoO₃

Summary

The ceramics $\operatorname{Bi}_{1-x}\operatorname{Pr}_x\operatorname{Fe}_{1-x}\operatorname{Co}_x\operatorname{O}_3$ ($0,0 \le x \le 1,0$) has been prepared by the solid-state reaction method, and its crystal structure, thermal expansion and electrophysical properties have been investigated. It has been found that $\operatorname{Bi}_{1-x}\operatorname{Pr}_x\operatorname{Fe}_{1-x}\operatorname{Co}_x\operatorname{O}_3$ solid solutions have rhombohedrically ($0,0 \le x \le 0,5$) or orthorhombically ($0,7 \le x \le 1,0$) distorted perovskite structure with parameters decreasing upon the increase of x and are *p*-type semiconductors (or *n*-type, for $x \ge 0,7$ near the room temperature). Their electric conductivity and average linear thermal expansion coefficient values increase with the increase of x, contrary to thermo-EMF values.