УДК 539.25:539.234:537.533.9

МИКРОСТРУКТУРА И СОСТАВ КАТАЛИТИЧЕСКИХ СЛОЕВ, ФОРМИРУЕМЫХ ИОННО-АССИСТИРУЕМЫМ ОСАЖДЕНИЕМ ПЛАТИНЫ НА УГЛЕРОДНЫЕ ПОДЛОЖКИ

© 2013 г. В. В. Поплавский, А. В. Дорожко

Белорусский государственный технологический университет, Минск, Беларусь Поступила в редакцию 20.07.2012 г.

Представлены результаты исследований микроструктуры и состава слоев, формируемых осаждением платины на углеродные носители электрокатализаторов – графит МГ-1, стеклоуглерод СУ-2000 и углеродную бумагу AVCarb[®] Carbon Fiber Paper P50. Слои сформированы в режиме IBAD, при котором осаждение металла и перемешивание осаждаемого слоя с атомами поверхности подложки ускоренными ионами (U = 10 kB) того же металла осуществляются, соответственно, из нейтральной фракции пара и плазмы вакуумного дугового разряда импульсного электродугового ионного источника. Исследование слоев проведено методами растровой электронной микроскопии, электронно-зондового микроанализа, дифракции отраженных электронов, спектрометрии резерфордовского обратного рассеяния и рентгеновской фотоэлектронной спектроскопии. Формируемые слои толщиной ~100 нм с содержанием платины ~10¹⁶ ат. · см⁻² характеризуются аморфной атомной структурой и повторяют микроструктуру поверхности углеродной подложки.

DOI: 10.7868/S0207352813040203

ВВЕДЕНИЕ

Легирование поверхности материалов с применением ионных пучков обеспечивает возможность введения в очень тонкий приповерхностный слой контролируемых количеств любой примеси на атомном уровне в неравновесных условиях. Наибольший интерес представляет ионно-лучевое модифицирование функциональных материалов, свойства которых определяются в основном составом поверхности. К числу таких материалов относятся катализаторы химических реакций.

При разработке гетерогенных катализаторов широко применяется нанесение каталитических металлов (формирование нанесенных катализаторов), при котором в качестве носителей используются сравнительно недорогие, инертные, коррозионно-стойкие в обычных условиях материалы, и на их поверхности создаются активные слои, содержащие микроколичества дорогостоящих каталитических металлов [1-3]. Наряду с традиционными методами формирования каталитических слоев перспективными, а зачастую и предпочтительными, представляются ионно-лучевые методы, позволяющие вводить в очень тонкий приповерхностный слой подложки-носителя легирующие примеси на наноразмерном атомном уровне. В силу этого возможно формирование слоев, обладающих необходимым для оптимального действия катализаторов сочетанием физико-химических свойств при незначительных затратах активирующих металлов [4–8]. К тому же формирование каталитического слоя, прочно связанного с матрицей вследствие внедрения ионов в кристаллическую решетку, осуществляется в вакуумных условиях и, как правило, в один технологический прием.

Цель настоящей работы — исследование микроструктуры и состава каталитических слоев, формируемых ионно-ассистируемым осаждением платины на углеродные носители электрокатализаторов.

Материалы, используемые в качестве основы электрокатализаторов (электродов электрохимических устройств), должны обладать электропроводностью, достаточной химической и электрохимической стабильностью, невысокой стоимостью. Перечисленным требованиям удовлетворяют, в частности, углеродные материалы, которые сочетают в себе такие свойства, как хорошая электропроводность, высокая теплопроводность, химическая стойкость в органических и неорганических растворителях, высокая температура испарения, хорошая механическая обрабатываемость и высокая чистота.

МЕТОДИКА ЭКСПЕРИМЕНТА

В качестве носителей электрокатализаторов выбраны графит МГ-1 и стеклоуглерод СУ-2000 (ФГУП НИИГрафит), а также углеродная бумага AVCarb[®] Carbon Fiber Paper P50 (Ballard Material

Products Inc.), используемая для изготовления газодиффузионных слоев низкотемпературных топливных элементов с полимерным мембранным электролитом — перспективных химических источников тока.

Каталитические слои на углеродных носителях были сформированы путем ионно-ассистируемого осаждения (IBAD – Ion Beam Assisted Deposition) платины. Отличительной особенностью предложенного режима осаждения является использование ионов осаждаемого металла в качестве ассистирующих процессу осаждения. Осаждение металла и перемешивание осаждаемого слоя с атомами поверхности подложки ускоренными ионами того же металла осуществляются в экспериментальной установке, соответственно, из нейтральной фракции пара и плазмы вакуумного дугового разряда импульсного электродугового ионного источника. Ускорение ассистирующих ионов осуществлялось при напряжении 10 кВ; в рабочей камере поддерживался вакуум ~10⁻² Па. В один прием подвергалась ионно-лучевой обработке серия углеродных подложек, размещенных на держателе общей площадью до 100 см²; размер каждой подложки составлял несколько квадратных сантиметров.

Экспериментальное исследование микроструктуры и элементного состава слоев проведено с использованием следующих аналитических методов: растровой электронной микроскопии (РЭМ) (SEM – Scanning Electron Microscopy); рентгеноспектрального микроанализа (РСМА) (EPMA – Electron Probe Microanalysis); дифракции отраженных электронов (ДОЭ) (EBSD – Electron Backscatter Diffraction); спектрометрии резерфордовского обратного рассеяния (РОР) (RBS – Rutherford Backscattering Spectrometry); рентгеновской фотоэлектронной спектроскопии (РФС) (XPS – X-ray Photoelectron Spectroscopy).

Исследование структуры поверхностных слоев методом РЭМ проведено с применением растрового электронного микроскопа JEOL JSM-5610LV. Совместно с электронно-микроскопическим анализом поверхности осуществлялся электроннозондовый микроанализ (ЕРМА) с дисперсией по энергии квантов характеристического рентгеновского излучения, испускаемого атомами элементов, входящих в состав анализируемого слоя, с применением кремний-литиевого детектора. Снимались также карты распределения элементов по поверхности исследуемых слоев. Энергия электронов, сканирующих поверхность исследуемых материалов, составляла 20 кэВ.

Исследования методом ДОЭ проведены с применением приставки фазового анализа HKL EBSD Premium System Channel 5 и электронного микроскопа LEO1455VP. Получение информации о кристаллической структуре материала в методе ДОЭ основано на дифракции на кристаллической решетке электронов, диффузно рассеянных в обратном направлении. Площадь зондирования участка поверхности составляет порядка 0.3–0.5 мкм², глубина анализируемого слоя – несколько десятков нанометров, что соответствует толщине исследуемых каталитических слоев. Угол падения первичного пучка электронов с энергией 20 кэВ на исследуемую поверхность составлял 70°.

Исследование поверхностных слоев методом POP осуществлялось путем измерения спектров рассеяния ионов ⁴He, ускоренных до энергии $E_0 = 1.3$ МэВ с применением ускорительного комплекса AN-2500 (High Voltage). Спектры снимались при нормальном падении пучка анализирующих частиц на поверхность образца и угле рассеяния $\theta = 170^{\circ}$. Энергетическое разрешение спектрометра с поверхностно-барьерным кремниевым детектором составляло 18 кэВ. Осуществлялась стандартная обработка спектров POP.

Анализ ионно-легированных поверхностей методом РФС проводился с применением спектрометра ЭС-2401. Эмиссия фотоэлектронов возбуждалась характеристическим Al K_{α} - или Mg K_{α} -излучением с энергией фотонов hv = 1486.6 эВ или 1253.6 эВ соответственно. Разрешающая способность спектрометра составляла 1.0 эВ; погрешность в измерении энергии связи – 0.2 эВ. В камере анализатора поддерживался вакуум ~10⁻⁸ Па. С целью анализа (наряду с элементным составом) особенностей распределения атомов в формируемых слоях по глубине применялось послойное ионно-лучевое травление анализируемой поверхности. Травление осуществлялось пучком ионов Ar⁺ с энергией 400–600 эВ при плотности ионного тока ~2–10 мкА \cdot см⁻². Анализ элементного состава проводился по обзорным спектрам, снятым в интервале значений энергии связи 10-1000 эВ. Снимались также спектры по участкам вблизи энергии связи электронов в атомах элементов, входящих в состав исследуемых слоев. Обработка спектров осуществлялась путем их калибровки по спектральной линии фотоэлектронной эмиссии из 1s-состояния атомов углерода, энергия связи электронов Е_в которого принималась равной 284.6 эВ, сглаживания экспериментальных спектральных линий, вычитания фона и разложения спектральных пиков. При разложении пиков на гауссианы предполагалось, что полуширина компонент разложения должна быть близкой к значению 1.8 эВ.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Электронно-микроскопические исследования показывают, что микроструктура формируемых каталитических слоев практически повторяет

Рис. 1. Электронно-микроскопические снимки (а, б) слоя, сформированного ионно-ассистируемым осаждением платины на углеродной бумаге AVCarb[®] Carbon Fiber Paper P50, и карты распределения углерода (в), платины (г) и кислорода (д).

структуру соответствующей углеродной подложки (рис. 1а, б и 2а). Исследование слоев методом РСМА обнаруживает в их составе осажденную платину, материал подложки, а также кислород. Наличие кислорода обусловлено осаждением из остаточной атмосферы рабочей вакуумной камеры, а также сорбционными процессами. Анализ карт распределения элементов (рис. 1в, г, д и 2б) показывает, что атомы элементов, входящих в состав слоя, распределены по поверхности практически равномерно. В то же время на поверхности встречаются включения платины размером порядка нескольких микрометров (рис. 1б, г и 2б), что обусловлено осаждением капель металла из

ПОВЕРХНОСТЬ. РЕНТГЕНОВСКИЕ, СИНХРОТРОННЫЕ И НЕЙТРОННЫЕ ИССЛЕДОВАНИЯ № 4 2013

Рис. 2. Электронно-микроскопический снимок (а) слоя, сформированного ионно-ассистируемым осаждением платины на стеклоуглероде СУ-2000, и распределение платины (б) по поверхности.

дугового разряда ионного источника. Наличие капельных образований чаще всего нежелательно, поскольку приводит к неоднородности состава и свойств формируемого осаждением из плазмы металлсодержащего покрытия. Для исключения попадания капель на обрабатываемую поверхность применяются специальные системы транспортировки плазменного потока, принцип действия которых основан на отклонении заряженной фракции в магнитном поле [9]. Однако при этом происходит разделение ионизированной и нейтральной фракций, что не позволяет реализовать используемый режим ионно-ассистируемого осаждения.

Результат дифракции электронов, отраженных от поверхностного слоя, сформированного ионно-ассистируемым осаждением платины на стеклоуглерод (рис. 3а, б), свидетельствует об отсутствии дальнего порядка в атомной структуре слоя. Упорядоченность структуры очень слабо проявляется в виде дифракционных линий Кикучи при исследовании методом ДОЭ капельной фазы платины (рис. 3в, г).

На рис. 4 представлены экспериментальные спектры РОР ионов ⁴Не от поверхности стеклоуглерода и углеродной бумаги с каталитическими слоями, сформированными ионно-ассистируемым осаждением платины (Pt/GC и Pt/CFP соответственно), и, для сравнения, от исходного стеклоуглерода (GC). В состав исследуемых слоев входят платина, углерод и кислород. Рассчитанное по спектру Pt/GC содержание платины в слое, сформированном на стеклоуглероде, составляет $\sim 1.9 \times 10^{16}$ ат. \cdot см⁻²; ее концентрация в максимуме распределения, расположенном на глубине ~ 10 нм, равна 5.5 ат. %; толщина содержащего платину слоя с постепенным уменьшением содержания металла ~ 100 нм. Такой характер распределения платины по глубине формируемого слоя может быть обусловлен радиационной диффузией атомов металла в подложку. Содержание платины в слое, сформированном на бумаге AVCarb[®] Carbon Fiber Paper, составляет ~ 1.7×10^{16} ат. · см⁻²; ее концентрация в максимуме распределения – 4 ат. %. Размытие формы спектрального пика, обусловленного рассеянием ионов гелия на ядрах атомов платины, в спектре Pt/CFP может быть обусловлено пористостью подложки из углеродной бумаги. Слои, сформированные в таких же условиях на графите, характеризуются аналогичным составом и распределением элементов.

Анализ элементного состава исследуемых слоев методом РФС подтверждает информацию, полученную методом РОР. На обзорных фотоэлектронных спектрах обнаруживаются линии, обусловленные эмиссией остовных электронов из атомов платины, углерода и кислорода.

На рис. 5, 6 приведены спектральные линии фотоэлектронов, эмитируемых из 4f-состояний атомов платины и 1*s*-состояний атомов кислорода и углерода, входящих в состав каталитического слоя, сформированного на стеклоуглероде ионно-ассистируемым осаждением платины. Атомы платины в анализируемом слое находятся в трех различных валентных состояниях. На основании справочных данных [10] для линии $Pt4f_{7/2}$ эти состояния в каталитическом слое (на некоторой его глубине, после травления ионами Ar⁺) (рис. 6а) можно идентифицировать как металлическое состояние платины (экспериментальное значение энергии связи $E_{\rm B}$ = 70.6 эВ), платина с хемосорбированным кислородом ($E_{\rm B} = 71.5$ эВ), платина в составе оксида PtO ($E_{\rm B} = 72.6$ эВ). На поверхности исследуемого слоя до травления (рис. 5а) атомы платины находятся также в трех валентных состояниях, однако наименьшей сте-

Рис. 3. Микроснимки и дифрактограммы, полученные при дифракции электронов, отраженных от каталитического слоя, сформированного на стеклоуглероде осаждением платины (а, б); капли платины на поверхности стеклоуглерода (в, г).

пенью окисления характеризуются атомы с адсорбированным кислородом ($E_{\rm B} = 71.2 \ {\rm sB}$); металлическая платина не обнаруживается. Имеются также атомы платины в составе оксида PtO $(E_{\rm B} = 72.3 \ {
m sB})$ и в состоянии более высокой степени окисления ($E_{\rm B} = 75.8$ эВ). Атомы кислорода (рис. 56, 66) и углерода (рис. 5в, 6в) в составе анализируемого слоя также находятся в нескольких валентных состояниях. Причем интенсивность компонентов разложения спектральных линий, а следовательно, и относительное содержание атомов в этих состояниях изменяются по мере ионного травления поверхности. В случае кислорода изменяются и сами эти состояния (рис. 56, 66). После травления существенно уменьшается интенсивность спектральной линии $O1s_{1/2}$ (рис. 56 и 66), что свидетельствует о меньшем содержании кислорода в глубине слоя.

Таким образом, результаты исследований модифицированной поверхности методами ДОЭ,

РЭМ и РСМА свидетельствуют об аморфной атомной структуре формируемых слоев, повторяющей микроструктуру поверхности углеродной подложки, и о практически равномерном распределении атомов осаждаемого металла по поверхности, за исключением попадающих из дугового разряда источника капель металла размером в несколько микрометров. В состав слоев, по данным РСМА, РОР и РФС, входят платина, углерод и кислород. Толщина слоев составляет ~100 нм; содержание платины в них менее 2×10^{16} ат. \cdot см⁻²; ее концентрация в максимуме распределения, расположенном на глубине ~10 нм, составляет несколько атомных процентов. Атомы платины, углерода и кислорода в анализируемых слоях находятся в нескольких различных валентных состояниях, которые изменяются в зависимости от расстояния от поверхности. По результатам исследования особенностей электронной структуры с применением РФС можно заключить, что между атомами

Рис. 4. Спектры РОР ионов ⁴Не от поверхности стеклоуглерода Pt/GC(1) и углеродной бумаги Pt/CFP с каталитическими слоями (2), сформированными ионно-ассистируемым осаждением платины, и от исходного стеклоуглерода GC(3).

Рис. 5. Спектры фотоэлектронов, возбужденных из 4*f*-состояний атомов платины (а), 1*s*-состояний атомов кислорода (б) и 1*s*-состояний атомов углерода (в), входящих в состав каталитического слоя, сформированного на стеклоуглероде Pt/GC осаждением платины.

ПОВЕРХНОСТЬ. РЕНТГЕНОВСКИЕ, СИНХРОТРОННЫЕ И НЕЙТРОННЫЕ ИССЛЕДОВАНИЯ № 4 2013

Рис. 6. Спектры фотоэлектронов, возбужденных из 4*f*-состояний атомов платины (a), 1*s*-состояний атомов кислорода (б) и 1*s*-состояний атомов углерода (в), входящих в состав каталитического слоя, сформированного на стеклоуглероде осаждением платины Pt/GC, полученные после травления поверхности ионами Ar^+ в течение 5 мин при плотности ионного тока 10 мкA · см⁻².

элементов, входящих в состав формируемых каталитических слоев, имеет место электронное взаимодействие, проявляющееся как в образовании химических связей, так и в делокализации валентных электронов атомов платины в кристаллическом поле углеродной матрицы [11].

ЗАКЛЮЧЕНИЕ

Формирование каталитически активных слоев на поверхности углеродных носителей проведено ионно-ассистируемым осаждением платины из плазмы вакуумного дугового разряда импульсного ионного источника в режиме, при котором металл вводится в каталитический слой на наноразмерном атомном уровне в неравновесных условиях обработки ускоренными ионами осаждаемого металла. При этом обеспечивается введение в приповерхностный слой подложки в вакуумных условиях микроколичеств легирующей примеси и формирование прочно связанного с матрицей активного слоя с низким содержанием активирующего металла, что выгодно отличается от традиционных методов приготовления катализаторов.

Получаемые каталитические слои повторяют микроструктуру поверхности подложки, имеют аморфную атомную структуру. В состав слоев наряду с атомами углеродной подложки и осаждаемого металла входит, по данным РСМА, РОР и РФС, кислород. Атомы элементов, входящих в состав слоев, распределены по поверхности практически равномерно, за исключением попадающих из дугового разряда источника капель платины размером в несколько микрометров. Определение фазового состава получаемых многокомпонентных слоев затруднено в силу отсутствия дальнего порядка в их атомной структуре.

Формируемые на углеродных носителях в предложенном режиме осаждения слои, отличаясь очень низким (менее $0.01 \text{ мг} \cdot \text{см}^{-2}$) содержанием платины, проявляют высокую электрокаталитическую активность в важных в практическом отношении процессах выделения водорода из растворов электролитов [12] и окисления органических спиртов – метанола и этанола [13].

Нанесенный каталитический металл, вследствие интенсивного ионного перемешивания, распределен в формируемых на углеродных носителях слоях на атомном уровне, а не осаждается в виде тонкой пленки, как при ионно-ассистируемом осаждении платины на углеродный носитель в серии работ [14—17], или микрочастиц, что может способствовать предотвращению возможного спекания катализатора при рабочих температурах.

Полученные экспериментальные данные свидетельствуют об эффективности применения ионно-ассистируемого осаждения каталитического металла в предложенном режиме для формирования активной поверхности электрокатализаторов.

Работа выполнена в рамках Государственной программы научных исследований Республики Беларусь "Энергоэффективность".

СПИСОК ЛИТЕРАТУРЫ

- Андерсон Дж. Структура металлических катализаторов. М.: Мир, 1978. 488 с.
- 2. *Слинкин А.А. //* Итоги науки и техники. Кинетика и катализ. 1982. Т. 10. С. 5.
- 3. *Коровин Н.В., Касаткин Э.В.* // Электрохимия. 1993. Т. 29. № 4. С. 448.
- Komarov F.F., Poplavsky V.V. // Rad. Eff. 1988. V. 106. № 1/2. P. 1.
- *Hirvonen J.K.* // Mater. Res. Soc. Symp. Proc. 2004. V. 792. P. R12.5.1.
- 6. Поплавский В.В., Мищенко Т.С., Матыс В.Г. // Персп. материалы. 2009. № 6. С. 12.
- 7. Поплавский В.В., Мищенко Т.С., Матыс В.Г. // ЖТФ. 2010. Т. 80. С. 138.
- 8. Поплавский В.В., Мищенко Т.С., Матыс В.Г. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2010. № 7. С. 33.
- 9. Осипов В.А., Саблев П.П., Ступак Р.И. и др. // ПТЭ. 1978. № 6. С. 173.

- NIST X-ray Photoelectron Spectroscopy Database. Version 3.5. (National Institute of Standards and Technology, Gaithersburg. 2003). http://stdata.nist.gov/xps/
- Poplavsky V.V. // Nucl. Instrum. Methods Phys. Res. B. 1987. V. 28. P. 534.
- 12. Poplavsky V.V., Dorozhko A.V., Matys V.G. et al. // Proc. 10th Int. Conf. Modification of Materials with Particle Beams and Plasma Flows. Tomsk: Publishing House of the IOA SB RAS, 2010. P. 648.
- Поплавский В.В., Стельмах Т.С., Матыс В.Г. // Сб. тез. докл. Межд. научно-практ. конф. СПб: Санкт-Петербургский гос. технол. ин-т, 2010. Т. 2. С.76.
- 14. *Gulla A.F., Saha M.S., Allen R.J. et al.* // Electrochem. Solid-State Lett. 2005. V. 8. P. A504.
- 15. Saha M.S., Gulla A.F., Allen R.J. et al. // Electrochim. Acta. 2006. V. 51. P. 4680.
- Gulla A.F., Saha M.S., Allen R.J. et al. // J. Electrochem. Soc. 2006. V. 153. P. A366.
- 17. *Ramaswamy N., Arruda T.M., Wen W. et al.* // Electrochim. Acta. 2009. V. 54. P. 6756.

Microstructure and Composition of Catalytic Layers Prepared by Platinum Ion-Beam Assisted Deposition onto Carbon Substrates

V. V. Poplavsky, A. V. Dorozhko

Microstructure and composition of Pt layers deposited onto carbon catalyst supports have been investigated. Ion beam assisted deposition of platinum onto carbon substrates (graphite MG-1, glasslike carbon GC-2000 and carbon paper AVCarb® Carbon Fiber Paper P50) is implemented from the neutral fraction and plasma of a pulsed arc discharge of ion source. Accelerated Pt ions (U = 10 kV) are used as deposition-assisting ions. Microstructure and composition of Pt layers are studied by scanning electron microscopy, electron probe microanalysis, electron backscatter diffraction, Rutherford backscattering spectrometry, and X-ray photoelectron spectroscopy methods. Thickness of layers is equal to ~100 nm, and concentration of platinum atoms in the layers is ~10¹⁶ cm⁻². The microstructure of the layers is amorphous and similar to the structure of the carbon substrates.