I. ХИМИЯ И ХИМИЧЕСКАЯ ТЕХНОЛОГИЯ

Неорганическая и физическая химия

УДК 54-165; 536.413.2; 537.31/.32; 537.621.4

A.I. Klyndyuk, E.A. Chizhova, E.A. Tugova, A.I. Galyas, S.V. Trukhanov

SYNTHESIS, STRUCTURE AND PROPERTIES OF THE Nd, Mn- SUBSTITUTED MULTIFERROICS SOLID SOLUTIONS BASED ON THE PEROVSKITE BISMUTH FERRITE

Belarusian State Techological University, Sverdlova str., 13A, Minsk, 220006, Belarus Republic

Ioffe Physical-Technical Institute, Russian Academy of Sciences, Politekhnicheskaya str., 26, St. Petersburg, 194021, Russia

Scientific and Practical Research Centre of NAS of Belarus, P. Brovki str., 19, Minsk 220072, Belarus Republic e-mail: klyndyuk@belstu.by

The ceramic samples of Bi_{0.85}Nd_{0.15}FeO₃, BiFe_{0.85}Mn_{0.15}O₃, and Bi_{0.85}Nd_{0.15}Fe_{0.85}Mn_{0.15}O₃ solid solutions were synthesized, their lattice constants were determined, and their microstructure, thermal expansion, magnetic susceptibility, magnetic moment, electrical conductivity, and thermo-EMF were studied. It was found that Bi_{0.85}Nd_{0.15}FeO₃ and BiFe_{0.85}Mn_{0.15}O₃ had rhombohedrally, but $Bl_{0.85}Nd_{0.15}Fe_{0.85}Mn_{0.15}O_3$ – orthorhombically distorted perovskite structure and are antiferromagnetic p-type semiconductors, which electrical resistivity values are smaller than for unsubstituted bismuth ferrite, Neel temperature and thermo-EMF coefficient sharply decreased at partial substitution of iron by manganese, and linear thermal expansion coefficient varied within $(10.0-13.4) \cdot 10^{-6} \text{ K}^{-1}$.

Keywords: perovskites, multiferroics, bismuth ferrite, thermal expansion, magnetic susceptibility, magnetic moment, electrical conductivity, thermo-EMF.

А.И. Клындюк¹, Е.А. Чижова², Е.А. Тугова³, А.И. Галяс⁴, С.В. Труханов⁵

СИНТЕЗ, СТРУКТУРА И СВОИСТВА Nd, Mn-ЗАМЕЩЕННЫХ ТВЁРДЫХ РАСТВОРОВ МУЛЬТИФЕРРОИКОВ HA OCHOBE ПЕРОВСКИТНОГО ФЕРРИТА ВИСМУТА

Белорусский государственный технологический университет, Республика Беларусь, 220006, Минск, ул. Свердлова, 13А Физико-технический институт им. А.Ф. Иоффе РАН, Россия, 194021, Санкт-Петербург, Политехническая ул., 26 Беларуси Научно-практический HAH центр по материаловедению, Республика Беларусь, 220072, Минск, ул. П. Бровки, 19 e-mail: klyndyuk@belstu.by

Синтезированы керамические образцы твердых растворов Bi_{0.85}Nd_{0.15}FeO₃, BiFe_{0.85}Mn_{0.15}O₃ . Bi_{0.85}Nd_{0.15}Fe_{0.85}Mn_{0.15}O₃, определены параметры их кристаллической структуры, изучены их микроструктура, термическое расширение, магнитная восприимчивость, магнитный момент, электропроводность и термо-ЭДС. Установлено, что Bi0.85Nd0.15FeO3 и BiFe0.85Mn0.15O3 имеют ромбоэдрически, а Bi_{0.85}Nd_{0.15}Fe_{0.85}Mn_{0.15}O₃ – орторомбически искаженную структуру перовскита и представляют собой антиферромагнитные полупроводники р-типа, величина электропроводности которых выше, чем для незамещенного феррита висмута, значения температуры Нееля и коэффициента термо-ЭДС резко уменьшаются при частичном замещении железа марганцем, а коэффициент линейного термического расширения изменяется в пределах (10.0–13.4)·10⁻⁶ К⁻¹.

Ключевые слова: перовскиты, мультиферроики, феррит висмута, термическое расширение, магнитная восприимчивость, магнитный момент, электропроводность, термо-ЭДС.

- ¹ Клындюк Андрей Иванович, канд. хим. наук, доцент каф. физической и коллоидной химии Белорусского государственного технологического уни-верситета, e-mail: klyndyuk@belstu.by Klyndyuk Andrei I., PhD (Chem.), associate professor, department of physical and colloid chemistry, Belarusian State Technological University, e-mail:
- klyndyuk@belstu.by ¹ Чижова Екатерина Анатольевна, канд. хим. наук, доцент каф. физической и коллоидной химии Белорусского государственного технологического университета, e-mail: chizhova@belstu.by Chizhova Ekaterina A., PhD (Chem.), associate professor, department of physical and colloid chemistry, Belarusian State Technological University, e-mail:

Дата поступления – 23 апреля 2015 года Received April 23, 2015

Chizhova@belstu.by Тугова Екатерина Алексеевна, канд. хим. наук, науч. сотр. лаб. новых неорганических материалов центра физики наногетероструктур Физико-технического института им. А.Ф. Иоффе РАН, e-mail: katugova@inbox.ru Tugova Ekaterina A., PhD (Chem.), researcher, inorganic materials laboratory of centre of nanoheterostructure physics, loffe Physical-Technical Institute, Russian Academy of Sciences, e-mail: katugova@inbox.ru Галяс Анатолий Иванович, канд. физ-мат. наук, ст. науч. сотр. лаб. магнитных материалов Научно-практического центра НАН Беларуси по мате-

риаловедению

Galyas Analoly I., PhD (Phys.), senior researcher, laboratory of magnetic materials, Scientific and Practical Research Centre of NAS of Belarus Труханов Сергей Валентинович, канд. физ-мат. наук, ст. науч. стр. научно-исследовательского сектора Научно-практического центра НАН Бела-руси по материаловедению, e-mail: truhanov@ifttp.bas-net.by Trukhanov Sergei V., PhD (Phys.), senior researcher, research sector, Scientific and Practical Research Centre of NAS of Belarus, e-mail: truhanov@ifttp.bas-net.by

DOI:10.15217/issn998984-9.2015.29.3

Введение

В последнее время интенсивное развитие получило новое направление микроэлектроники – спинтроника [1], материалы которой должны обладать низкой электропроводностью, спиновым упорядочением при комнатной температуре и высокой скоростью распространения спиновой волны, а также большим магнитоэлектрическим эффектом [2]. Соединения, в которых наличествуют хотя бы два из трех типов упорядочения (магнитного, сегнетоэлектрического и механического), называют мультиферроиками, а обладающие одновременно магнитным и сегнетоэлектрическим упорядочением – сегнетомагнетиками [3].

К этим соединениям относится перовскитный феррит висмута BiFeO₃, который характеризуется высокими температурами антиферромагнитного (≈ 640 К) и сегнетоэлектрического упорядочения (≈ 1100 К) [4, 5] и в связи с этим рассматривается как перспективная основа для разработки мультиферроиков, способных найти применение в различных устройствах сенсорной электроники, спинтроники и т.д. Серьезным недостатком BiFeO₃ является наличие в нем несоразмерной пространственно модулированной структуры циклоидного типа, из-за чего линейный магнитоэлектрический эффект отсутствует, а проявляется только менее интенсивный квадратичный [4]. Подавление пространственной модуляций, позволяющее получать на основе BiFeO₃ мультиферроики с большим линейным магнитоэлектрическим эффектом, может быть осуществлено использованием магнитных полей высокой напряженности [6], изготовлением на основе феррита висмута или его производных тонкопленочных либо наноразмерных образцов [2, 4, 6, 7], а также час-тичным замещением висмута в BiFeO₃ редкоземельными элементами (РЗЭ) [8, 9] или железа 3d-металлами [10, 11].

Эффективным способом регулирования физико-химических и функциональных характеристик оксидов семейства перовскита (АВО₃) является частичное совместное замещение катионов, расположенных в А- и В-подрешетках их кристаллической структуры как с сохранением (АВО₃), так и с нарушением кислородной стехиометрии (ABO_{3-б}). Подобный подход был использован в работах [12-16], в которых были изучены магнитные и диэлектрические свойства твердых растворов Bi1-xDyxFe1-"Mn_xO₃ (0.03 ≤ x ≤ 0.30) [12], тепловое расширение и электротранспортные свойства ферритов-кобальтитов висмута-празеодима $Bi_{1-x}Pr_xFe_{1-x}CoO_3$ (0.0 $\leq x \leq$ 1.0) [13], магнитные свойства твердых растворов Bi_{1-x}La_xFe_{1-x}Co_xO₃ $(0.7 \le x \le 1.0)$ [14], а также тепловое расширение, электротранспортные и диэлектрические свойства ферритовманганитов висмута–неодима $Bi_{1-x}Nd_xFe_{1-x}Mn_xO_3$ (0.03 $\leq x$ ≤ 0.21) [15, 16].

При анализе свойств твердых растворов с двойным замещением выделить влияние отдельного заместителя часто затруднительно, в связи с чем целью настоящей работы явилось изучение влияния раздельного и совместного замещения висмута неодимом и железа марганцем на кристаллическую структуру, микроструктуру, термическую стабильность и физико-химические свойства твердых растворов Ві_{0.85}Nd_{0.15}FeO₃, ВіFe_{0.85}Mn_{0.15}O₃ и Ві_{0.85}Nd_{0.15}Fe_{0.85}Mn_{0.15}O₃.

Экспериментальная часть.

Керамические образцы твердых растворов $Bi_{0.85}Nd_{0.15}FeO_3$, $BiFe_{0.85}Mn_{0.15}O_3$ и $Bi_{0.85}Nd_{0.15}Fe_{0.85}Mn_{0.15}O_3$ синтезировали методом твердофазных реакций из Bi_2O_3 («х.ч.»), Nd_2O_3 («HO–Л»), Fe_2O_3 («ос. ч. 2–4») и Mn_2O_3 («ос. ч. 11–2») на воздухе в интервале температур 1073–1113 К в течение 8-40 ч в три стадии с двумя промежуточными перетираниями и перепрессовываниями [13].

Рентгенофазовый анализ (РФА) порошков проводили на дифрактометре Bruker D8 XRD (СиКа-излучение, Ni-фильтр); параметры кристаллической структуры синтезированных твердых растворов определяли при помощи рентгеноструктурного табличного процессора RTP [14]. С учетом результатов РФА рассчитывали рентгеновскую плотность (ррент) образцов. Величину кажущейся плотности (р) рассчитывали по геометрическим размерам и массе образцов, а пористость (П) спеченной керамики определяли по формуле П = (1-р/р_{рент}) 100 %. ИК-спектры поглощения порошков записывали на Фурье-спектрометре Nexus фирмы ThermoNicolet в интервале частот 300-1500 см- $(\Delta v \le \pm 2 \text{ см}^{-1})$. Микроструктуру и элементный состав образцов определяли методом сканирующей электронной микроскопии (СЭМ) и энергодисперсионного микрорентгеноспектрального анализа (МРСА) на сканирующем электронном микроскопе Quanta 200, оснащенным микрозондовой приставкой EDAX.

Магнитную восприимчивость порошков изучали при помощи пондеромоторного метода в магнитном поле напряженностью 0.86 Тл в интервале температур 80-1000 К [17], а магнитный момент керамики состава Bi_{0.85}Nd_{0.15}Fe_{0.85}Mn_{0.15}O₃ исследовали вибрационным методом с помощью универсальной криогенной высокополевой измерительной системы (Cryogenic Ltd, UK) в интервале температур 5-300 К и полей 0-14 Тл [18].

Электропроводность и термо-ЭДС спеченных керамических образцов изучали на воздухе в интервале температур 300-1100 К, а тепловое расширение – в интервале температур 300-750 К по методикам, описанным в [13, 19, 20]. Значения энергии активации электропроводности (E_A) и термо-ЭДС (E_S) керамики находили из линейных участков зависимостей $\ln(\sigma T) = f(1/T)$ и S = f(1/T) соответственно, а коэффициента линейного теплового расширения (КЛТР, α) – из линейных участков зависимостете $\Delta I I_0 = f(T)$.

Результаты и их обсуждение

На рентгеновских дифрактограммах порошков Ві_{0.85}Nd_{0.15}FeO₃, ВіFe_{0.85}Mn_{0.15}O₃ и Ві_{0.85}Nd_{0.15}Fe_{0.85}Mn_{0.15}O₃ после завершения синтеза помимо рефлексов основной фазы (перовскита типа BiFeO₃) наблюдались рефлексы примесных фаз – Bi₂₅FeO₃₉ и Bi₂Fe₄O₉, интенсивность которых была наибольшей для образца BiFe_{0.85}Mn_{0.15}O₃ (рисунок 1). Наши результаты находятся в хорошем согласии с литературными данными [21, 22], согласно которым при помощи метода твердофазных реакций однофазные образцы феррита висмута получить практически невозможно, поскольку ввиду затрудненности диффузии оксида висмута через слой продукта реакции – BiFeO₃ – реакция (1)

проходит не до конца: наряду с конечным продуктом реакции – перовскитным ферритом висмута $BiFeO_3 - B$ реакционной смеси всегда остается небольшое количество полупродуктов – обогащенного оксидом висмута $Bi_{25}FeO_{39}$ и обогащенного оксидом железа $Bi_2Fe_4O_9$, которые локализуются соответственно на поверхности и внутри зерен керамики [22]. Проблема неоднофазности керамики не решается увеличением времени или температуры отжига, поскольку это приводит либо к обеднению реакционной смеси оксидом висмута Bi_2O_3 ввиду его частичной сублимации в газовую фазу (по данным [23], при температуре 1100 К давление паров Bi_2O_3 над $BiFeO_3$ составляет 5.67·10⁻⁴ Па, а общее давление паров (включающих, помимо Bi_2O_3 , также Bi, O_2, BiO, Bi_2 и Bi_4O_6) равно 0.48 Па), либо к перитектическому плавлению феррита висмута $BiFeO_3 = B$ обоих случаях керамика обогащается фазой $Bi_2Fe_4O_9$ [21].

В соответствии с данными МРСА (таблица 1), реальный состав образцов, Bi_{0.85}Nd_{0.15}FeO₃, BiFe_{0.85}Mn_{0.15}O₃ и Bi_{0.85}Nd_{0.15}Fe_{0.85}Mn_{0.15}O₃, в пределах погрешности эксперимента, совпадал с номинальным, из чего следует, что потери оксида висмута Bi₂O₃ образцами в процессе их термообработки отсутствовали или были пренебрежимо малы.

Рисунок 1. Рентгеновские дифрактограммы порошков BiFeO ₃ (1),
Bi _{0.85} Nd _{0.15} FeO ₃ (2), BiFe _{0.85} Mn _{0.15} O ₃ (3) u Bi _{0.85} Nd _{0.15} Fe _{0.85} Mn _{0.15} O ₃ (4).
Символами * и # обозначены рефлексы примесных фаз
соответственно Ві ГедО, и Ві БеО,

Таблица 1. Номинальный и реальный состае
ферритов-манганитов висмута-неодима, определенный
при помощи MPCA. «Ф.е.» – формульная единица

Состав	Bi/ф.e.	Nd/ф.e.	Fe/ф.e.	Mn/ф.e.
$Bi_{0.85}Nd_{0.15}FeO_3$	0.841	0.160	1.000	-
BiFe _{0.85} Mn _{0.15} O ₃	0.982	-	0.841	0.159
$Bi_{0.85}Nd_{0.15}Fe_{0.85}Mn_{0.15}O_{3}$	0.832	0.154	0.853	0.147

Согласно результатам РФА, твердые pac-Ві_{0.85}Nd_{0.15}FeO₃ и ВіFe_{0.85}Mn_{0.15}O₃ имели ромтворы боэдрически искаженную структуру перовскита (пр. гр. симм. *R*3c), а феррит-манганит висмута-неодима Ві_{0.85}Nd_{0.15}Fe_{0.85}Mn_{0.15}O₃ – орторомбически искаженную структуру перовскита (пр. гр. симм. Рпта) (рисунок 1, таблица 2). Изменение структуры твердых растворов при переходе от Bi_{0.85}Nd_{0.15}FeO₃ и BiFe_{0.85}Mn_{0.15}O₃ Bi_{0.85}Nd_{0.15}Fe_{0.85}Mn_{0.15}O₃ обусловлено, очевидно, суммарной концентрации **VBEЛИЧЕНИЕМ** ИОНОВзаместителей (неодима и марганца) в последнем (от 7.5 до 15 мол.%). Так, в работе [15] было найдено, что в квазибинарной системе BiFeO₃–NdMnO₃ твердые растворы $Bi_{1-x}Nd_xFe_{1-x}Mn_xO_3$ при x < 0.12 (суммарная концентрация замещающих ионов меньше 12 мол. %) имеют ромбоэдрически, а при x > 0.12 (суммарная концентрация ионов-заместителей больше 12 мол. %) - орторомбически искаженную структуру перовскита. Как видно из данных, представленных в таблице 2, частичное замещение висмута неодимом и железа марганцем в BiFeO₃ приводит к ожидаемому уменьшению параметров кристаллической структуры образующихся при таком замещении твердых растворов (радиусы ионов Bi^{3+} , Nd^{3+} , Fe^{3+} и Mn^{3+} для к.ч. = 6 составляют 0.102 нм, 0.0995 нм, 0.0645 нм и 0.065 нм соответственно [24]), что было наиболее выражено для дизамещенного твердого раствоpa Bi_{0.85}Nd_{0.15}Fe_{0.85}Mn_{0.15}O₃.

На ИК-спектрах поглощения феррита висмута и ВіFeO₃ и твердых растворов на его основе наблюдалось четыре полосы поглощения с экстремумами при 340-363 см⁻¹ (v₁), 384-390 см⁻¹ (v₂), 436-445 см⁻¹ (v₃) и 540-561 см⁻¹ (v₄) (таблица 3), отвечающие валентным (v₄) и деформационным (v₃) колебаниям связей (Fe,Mn)–О и колебаниям связей (Bi,Nd)–О (v₁, v₂) в структуре этих оксидов [25]. Как следует из данных, приведенных в таблице 3, частичное замещение в BiFeO₃ железа марганцем и висмута неодимом приводит к смещению полос поглощения в сторону больших волновых чисел, что указывает на усиление металл-кислородных взаимодействий в кристаллической структуре твердых растворов (Bi,Nd)(Fe,Mn)O₃ по сравнению с незамещенной фазой BiFeO₃ и хорошо согласуется с результатами РФА.

Таблица 2. Параметры кристаллической структуры
феррита висмута и его твердых растворов

Состав	а, нм	<i>b</i> , нм	C, HM	<i>V</i> , нм ³	<i>V</i> _p , нм ³
BiFeO₃	0.5576(2)	-	1.386(1)	0.3733(5)	0.0622(1)
$Bi_{0.85}Nd_{0.15}FeO_3$	0.5575(3)	-	1.382(1)	0.3720(6)	0.0620(1)
$BiFe_{0.85}Mn_{0.15}O_{3}$	0.5573(4)	-	1.381(1)	0.3716(8)	0.0619(1)
$\begin{array}{c} Bi_{0.85}Nd_{0.15}Fe_{0.85}\\ Mn_{0.15}O_{3}\end{array}$	0.5579(11)	0.7847(12)	0.5582(15)	0.2444(15)	0.0611(4)

Таблица 3. Положения экстремумов на ИК-спектрах поглощения порошков феррита висмута и его производных

Состав	$\nu_{1,}\text{CM}^{\text{-}1}$	ν ₂ , CM ⁻¹	$\nu_{3,}\text{CM}^{\text{-}1}$	$\nu_{4,}\text{CM}^{\text{-}1}$
BiFeO₃	340	384	438	540
$Bi_{0.85}Nd_{0.15}FeO_3$	363	390	436	550
BiFe _{0.85} Mn _{0.15} O ₃	357	390	445	553
$Bi_{0.85}Nd_{0.15}Fe_{0.85}Mn_{0.15}O_{3}$	-	388	-	561

Как видно из рисунка 2, синтезированная в настоящей работе керамика характеризовалась высокой пористостью и состояла из агрегатов размеров 5-15 мкм, каждый из которых включал в себя несколько десятков зерен, размер которых варьировался в пределах 0.5-3 мкм и был наименьшим для образца состава Bi_{0.85}Nd_{0.15}Fe_{0.85}Mn_{0.15}O₃. Сравнивая значения кажущейся плотности и пористости твердых растворов (Bi,Nd) (Fe,Mn)O₃ и незамещенного феррита висмута BiFeO₃ (таблица 4), можно заключить, что спекаемость феррита висмута несколько улучшается при частичном замещении железа марганцем и заметно ухудшается при частичном замещении висмута неодимом.

Таблица 4. Значения рентгенографической (рент) и кажущейся плотностей (ркм), пористости (П) и коэффициента линейного термического расширения (α) керамических образцов феррита висмута и твердых растворов на его основе

Состав	р _{рент,} г/см ³	ρ _{каж,} г/см ³	П, %	$\alpha \cdot 10^6$, K ⁻¹
BiFeO ₃	8.35	4.87	42	11.9
Bi _{0.85} Nd _{0.15} FeO ₃	8.12	4.80	41	12.9
BiFe _{0.85} Mn _{0.15} O ₃	8.38	5.40	36	13.4
Bi _{0.85} Nd _{0.15} Fe _{0.85} Mn _{0.15} O ₃	8.23	3.70	55	10.0

Температурные зависимости относительного удлинения исследованных образцов были практически линейными, из чего можно заключить, что в интервале температур 300-750 К они не испытывают структурных фазовых переходов. Величина КЛТР твердых растворов $Bi_{0.85}Nd_{0.15}FeO_3$ и $BiFe_{0.85}Mn_{0.15}O_3$ была выше, чем для $BiFeO_3$ (таблица 4), что, вероятно, обусловлено увеличением степени ангармонизма колебаний в их структуре, более выраженном при замещении $Mn^{3+} \rightarrow Fe^{3+}$, чем при замещении $Nd^{3+} \rightarrow Bi^{3+}$. КЛТР керамики $Bi_{0.85}Nd_{0.15}Fe_{0.85}Mn_{0.15}O_3$ был ниже, чем у $BiFeO_3$ (таблица 4), что объясняется значительным сжатием элементарной ячейки этого твердого раствора по сравнению с базовым ферритом висмута (таблица 2).

Рисунок 2. Электронные микрофотографии поверхности сколов керамики Bi_{0.85}Nd_{0.15}FeO₃ (a), BiFe_{0.85}Mn_{0.15}O₃ (б) и Bi_{0.85}Nd_{0.15}Fe_{0.85}Mn_{0.15}O₃ (б).

Рисунок 3. Температурные зависимости молярной магнитной восприимчивости (χ) (1) и обратной магнитной восприимчивости (1/χ) (2) порошков Bi_{0.85}Nd_{0.15}FeO₃ (a), BiFe_{0.85}Mn_{0.15}O₃ (6) и Bi_{0.85}Nd_{0.15}Fe_{0.85}Mn_{0.15}O₃ (в).

На температурных зависимостях магнитной восприимчивости ферритов–манганитов висмута-неодима при нагреве-охлаждении в области температур ниже температуры Нееля наблюдалось отсутствие повторяемости: значения магнитной восприимчивости порошков Bi_{0.85}Nd_{0.15}FeO₃ и Bi_{0.85}Nd_{0.15}Fe_{0.85}Mn_{0.15}O₃ в антиферромагнитной области при охлаждении были выше, а для ВіFe_{0.85}Mn_{0.15}O₃ – ниже, чем при нагреве (рисунок 3). Обнаруженное отсутствие повторяемости, видимо, связано с перемещением магнитоактивных ионов в кристаллической решетке ферритов-манганитов висмута-неодима в процессе медленного нагрева в магнитном поле, которое приводит к образованию ферромагнитных кластеров с температурой Кюри, совпадающей с температурой Нееля твердых растворов (Bi,Nd)(Fe,Mn)O₃.

Значение температуры Нееля (*T_N*) твердого раствора Ві_{0.85}Nd_{0.15}FeO₃ составило 624 К, что близко к величине *T_N* феррита висмута ВіFeO₃ – 640 К [5], а для твердых растворов ВіFe_{0.85}Mn_{0.15}O₃ и Ві_{0.85}Nd_{0.15}Fe_{0.85}Mn_{0.15}O₃ величина *T_N* составила 470 и 473 К соответственно (таблица 5), из чего можно заключить, что магнитное взаимодействие ионов железа в феррите висмута ВіFeO₃ при частичном замещении Mn³⁺ \rightarrow Fe³⁺ ослабевает сильнее, чем при замещении Nd³⁺ \rightarrow Bi³⁺.

Таблица 5. Значения температур Нееля (T_N), констант в уравнении Кюри–Вейсса (С. <u>O)</u> и величин эффективного парамагнитного момента (*P*_{эфе}), приходящегося на формульную единицу твердых растворов Віовs/Nd_{0.15}FeO₃ (BNFO), BiFe_{0.85}Mn_{0.15}O₃ (BFMO) и Ві_{0.85}Nd_{0.15}Fe_{0.85}Mn_{0.15}O₃ (BNFMO)

Состав	<i>Т</i> _N , К	<i>Т</i> , К	С, см ^{з.} К/моль	Θ, Κ	р ^{эксп} эфф, µб	$p_{_{ m o}\phi\phi}^{_{ m teop}}$, µб
BNFO	624	625–999	4.090	-1054	5.72	6.01
BFMO	470	541–1029	3.564	-938	5.34	5.76
BNFMO	473	580–960	3.932	-764	5.61	5.86

Величина скачка молярной магнитной восприимчивости ($\Delta\chi$) ферритов-манганитов (Bi,Nd)(Fe,Mn)O₃ при их переходе из антиферромагнитного в парамагнитное состояние составила (0.9-3.0)·10⁻³ см³/моль и была наибольшей для твердого раствора Bi_{0.85}Nd_{0.15}Fe_{0.85}Mn_{0.15}O₃ (2.96·10⁻³ см³/моль) (таблица 6). Значения молярной магнитной восприимчивости изученной керамики при температуре Нееля (χ_{T_N}) изменялись в пределах (3.4–6.1)·10⁻³ см³/моль и достигали максимального значения для Bi_{0.85}Nd_{0.15}Fe_{0.85}Mn_{0.15}O₃ – 6.14·10⁻³ см³/моль (таблица 6). Экстраполяцией линейного участка зависимостей $\chi = f(T)$ при $T < T_N$ для исследованных образцов были определены значения $\chi_{T=0}$ (таблица 6). Известно, что для одноосного двухподрешеточного антиферромагнетика теоретическое значение ($\chi_{T_N}/\chi_{T=0} = 0.667$ (2/3) [26]. Для Bi_{0.85}Nd_{0.15}FeO₃ это значение (0.69) близко к теоретическому, а для BiFeO_{3.85}Mn_{0.15}O₃ и Bi_{0.85}Nd_{0.15}FeO_{3.85}Mn_{0.15}O₃ оно составляет соответственно 0.58 и 0.43 (табл. 6), что значи

Таблица 6. Значения молярной магнитной восприимчивости ферритов Ві_{0.85}Nd_{0.15}FeO₃, ВіFe_{0.85}Mn_{0.15}O₃ и Ві_{0.85}Nd_{0.15}Fe_{0.85}Mn_{0.15}O₃ при температурс Нееля и абсолютном нуле температурс скачка молярной магнитной восприимчивости при температуре Нееля, а также отношения

Образец	10 ³ ·χ ₇ , CM ³ / ^N	10 ³ ·χ ₇₌₀ , CM ³ /	10 ³ ·Δχ, CM ³ /	χ _{τ,} /χ _{τ=0}
	моль	моль	моль	N
Bi _{0.85} Nd _{0.15} FeO ₃	3.81	2.61	1.37	0.69
BiFe _{0.85} Mn _{0.15} O ₃	3.42	1.98	0.89	0.58
Bi _{0.85} Nd _{0.15} Fe _{0.85} Mn _{0.15} O ₃	6.14	2.57	2.96	0.43

В парамагнитной области (*T* > *T_N*) зависимость *χ* = *f*(*T*) образцов подчинялась закону Кюри-Вейсса (2)

$$\chi = \frac{C}{T + \Theta}$$
(2)

где С – молярная константа Кюри, а Θ – константа Вейсса (парамагнитная температура Кюри).

Значения констант в уравнении Кюри-Вейсса (С и Θ) и эффективного магнитного момента ($p_{3\phi\phi}^{*xcn}$) твердых растворов (Bi,Nd)(Fe,Mn)O₃, рассчитанного по формуле (3)

$$p_{\varphi\phi\phi}^{\varphi\kappa c\pi} = \frac{\sqrt{3 \, k C \, / N \, A}}{\mu \, E},\tag{3}$$

где *k* – постоянная Больцмана, *C* – молярная константа Кюри, *N*_A – число Авогадро, µ_Б – магнетон Бора, представлены в таблице 5.

Также в таблице 5 приведены теоретические значения эффективного магнитного момента ($p_{_{3}\varphi\varphi}^{_{
m reop}}$) твердых растворов (Bi,Nd)(Fe,Mn)O₃, определенного по уравнению (4)

$$p_{\varphi \varphi \varphi}^{\text{reop}} = \sqrt{\sum \mu_i^2}, \qquad (4)$$

где µ_i – величина магнитного момента иона *i*-й магнитной подсистемы, рассчитываемая по формуле (5)

$$\mu_i = \sqrt{n(n+2)}\mu_{\mathbf{b}},\tag{5}$$

где *n* – среднее число неспаренных электронов, приходящихся на магнитный ион (*n* = 3, 4, и 5 для Nd³⁺, Mn³⁺ и Fe³⁺ соответственно).

Как видно из данных, представленных в таблице 5, значения C для всех исследованных образцов близки, а парамагнитная температура Кюри (Θ) отрицательна, что указывает на отрицательный знак обменных взаимодействий между магнитными ионами в структуре твердых растворов (Bi,Nd)(Fe,Mn)O₃, т.е., на антиферромагнитное упорядочение магнитных моментов ионов Fe³⁺, Mn³⁺ и Nd³⁺ в их структуре. Отношение $|\Theta|/T_N$ для ферритов Bi_{0.85}Nd_{0.15}FeO₃, BiFe_{0.85}Mn_{0.15}O₃ и Bi_{0.85}Nd_{0.15}FeO₃, BiFe_{0.85}Mn_{0.15}O₃ составляет 1.69, 2.00 и 1.62 соответственно, что больше единицы и, согласно [26], также указывает на антиферромагнитный характер упорядочения магнитных ионов в структуре этих твердых растворов при температуре ниже T_N .

^{1 м.} Значения $p_{_{3\phi\phi}}^{_{3\kappacn}}$ твердых растворов $Bi_{0.85}Nd_{0.15}FeO_3$, BiFe_{0.85}Mn_{0.15}O_3 и $Bi_{0.85}Nd_{0.15}Fe_{0.85}Mn_{0.15}O_3$ были на 0.29 $\mu_{\rm E}$ (4.8 %), 0.42 $\mu_{\rm E}$ (7.3 %) и 0.25 $\mu_{\rm E}$ (4.3 %) соответственно ниже, чем $p_{_{3\phi\phi}}^{_{\rm reop}}$, что, вероятно, обусловлено высокой ковалентностью металл-кислородных связей в кристаллической решетке этих сложных оксидов, либо возможностью нахождения части ионов марганца в этих фазах в низкоспиновом состоянии.

На рисунке 4 представлены полевые зависимости упорядоченного магнитного момента твердого раствора Ві_{0.85}Nd_{0.15}Fe_{0.85}Mn_{0.15}O₃. Видно, что в области тем-ператур 100–300 К зависимости $\sigma = f(H)$ линейны, а при температуре 5 К зависимость $\sigma = f(H)$ несколько отклоняется от линейной в полях выше 5 Тл. Характер зависимостей σ = f(H) для Bi_{0.85}Nd_{0.15}Fe_{0.85}Mn_{0.15}O₃ указывает на то, что в области температур ниже 300 К он находится в антиферромагнитном или парамагнитном состоянии, а незначительная величина упорядоченного магнитного момента свидетельствует в пользу того, что это состояние анти-ферромагнитно. Ненулевые значения спонтанного и остаточного упорядоченного магнитного момента (σ_r), а также коэрцитивной силы (σH_c) Bi_{0.85}Nd_{0.15}Fe_{0.85}Mn_{0.15}O₃ (так, при температуре 5 К σ_r = 2.87·10⁻³ $\mu_b/\phi.e.$, а σH_c = 75,1 мТл), характерные для ферромагнитного упорядоченного состояния или наличия ферромагнитных корреляций ближнего порядка [27], указывают на то, что антиферромагнитное состояние является неоднородным. Величина упорядоченного магнитного момента твердого раствора Ві_{0.85}Nd_{0.15}Fe_{0.85}Mn_{0.15}O₃ с ростом температур уменьшалась нелинейно и в поле 14 Тл изменялась от $\approx 0.33 \mu_{\rm b}/\phi$.е. при температуре 5 К до $\approx 0.11 \mu_{\rm b}/\phi$.е. в области температур 200-300 К (рисунок 4, врезка).

Рисунок 4. Полевые зависимости упорядоченного магнитного момента формульной единицы (σ) твердого раствора $B_{0.88}Nd_{0.15}Fe_{0.85}Mn_{0.15}O_3$ при температурах 5 К (1), 100 К (2), 200 К (3) и 300 К (4). На врезке дана температурная зависимость σ твердого раствора $B_{0.85}Nd_{0.15}Fe_{0.85}Mn_{0.15}O_3$ в поле 14 Тл.

Как видно из рисунка 5, исследованные в работе материалы являются полупроводниками (дк/дT > 0) p-типа (S > 0) (для твердого раствора BiFe_{0.85}Mn_{0.15}O₃ в области температур 930-1030 К коэффициент Зеебека меняет знак: S < 0). Значения электропроводности ферритов-манганитов висмута-неодима в интервале температур 300-1100 К изменялись в пределах 1.9·10⁻⁷-0.062 См/см, 1.9·10⁻⁶-0.218 См/см и 8.6 10-7-0.221 См/см для твердых растворов Ві_{0.85}Nd_{0.15}FeO₃, ВіFe_{0.85}Mn_{0.15}O₃ и Ві_{0.85}Nd_{0.15}Fe_{0.85}Mn_{0.15}O₃ соответственно и при высоких температурах были существенно выше, чем для незамещенного феррита висмута (согласно [13], величина к ВіFeO₃ возрастает от 1.3·10⁻⁶ до 0.026 См/см при возрастании температуры от 300 до 1100 К). Сопоставляя результаты измерений, можно заключить, что частичное замещение железа марганцем приводит к более сильному возрастанию величины к керамики, чем частичное замещение висмута неодимом.

Рисунок 5. Температурные зависимости удельной электропроводности (k) (a) и коэффициента термо-ЭДС (S) (б) керамических образцов феррита висмута BiFeO₃ (1) и твердых растворов Bi_{oss}Nd_{0.15}FeO₃ (2), BiFe_{0.85}Mn_{0.15}O₃ (3) и Bi_{0.85}Nd_{0.15}Fe_{0.85}Mn_{0.15}O₃ (4).

Величина энергии активации электропроводности (*E_A*) феррита висмута составила 0.632 эВ, что хорошо согласуется с результатами работы [28], согласно которым *E_A* BiFeO₃ составляет 0.628(9) эВ. Для твердых растворов (Bi,Nd)(Fe,Mn)O₃ значения *E_A* были ниже, причем наименьшее значение энергии активации электропроводности наблюдалось для твердого раствора BiFe_{0.85}Mn_{0.15}FeO₃ и Bi_{0.85}Nd_{0.15}FeO₃ выли близки (таблица 7).

Таблица 7. Значения параметров электропереноса (E_A, E_S, E_m) в керамических образцах феррита висмута и твердых растворов на его основе

Состав	<i>Е</i> _А , эВ	<i>E</i> s, эВ	<i>Е</i> _m , эВ
BiFeO₃	0.632	0.422	0.210
$Bi_{0.85}Nd_{0.15}FeO_3$	0.540	0.212	0.328
BiFe _{0.85} Mn _{0.15} O ₃	0.454	0.073	0.381
$Bi_{0.85}Nd_{0.15}Fe_{0.85}Mn_{0.15}O_3$	0.547	0.080	0.467

Значения коэффициента термо-ЭДС керамики (Bi,Nd)(Fe,Mn)O₃ были ниже, чем для незамещенного перовскитного феррита висмута (согласно [13], коэффициент Зеебека ВiFeO₃ в интервале температур 623-1073 К изменяется в пределах 595-1000 мкВ/К) (рисунок 5) и для твердых растворов BiFe_{0.85}Mn_{0.15}O₃ и Bi_{0.85}Nd_{0.15}Fe_{0.85}Mn_{0.15}O₃ были аномально низки, принимая во внимание величину их электропроводности (так, при 600 < T < 800 K к(BNMO) $\approx \kappa$ (BNFMO), но S(BNMO) >> S(BNFMO)), причем для BiFe_{0.85}Mn_{0.15}O₃ температурный коэффициент термо-ЭДС при 980 К изменял знак с отрицательного ($\partial S/\partial T <$ 0) на положительный ($\partial S/\partial T > 0$) (рисунок 56). Подобные аномалии коэффициента Зеебека не характерны для типичных полупроводников, но могут наблюдаться в сильно коррелированных системах, к которым относятся многие перовскиты (включая перовскитный феррит висмута BiFeO₃), а также слоистые кобальтиты натрия и кальция.

Так, в работе [29] при описании термо-ЭДС слоистого кобальтита натрия Na_xCoO₂ было использовано модифицированное уравнение Хейкеса (6)

$$S = \frac{k}{e} \ln \left(\frac{g_4 \, [\text{Co}^{3+}]}{g_3 \, [\text{Co}^{4+}]} \right)$$
(6)

где k – постоянная Больцмана, e – заряд электрона, g_4 и g_3 – вырождение ионов Со⁴⁺ и Со³⁺ соответственно, а [Co³⁺] и [Co⁴⁺] – их концентрации в структуре Na_xCoO₂. Авторами [29] было показано, что, в зависимости от спинового состояния (низко-, промежуточно- или высокоспинового) ионов Со⁴⁺ и Со³⁺ в структуре Na_xCoO₂ величина коэффициента термо-ЭДС этого слоистого оксида может изменяться от –84 до 214 мкВ/К. Учитывая это, можно предположить, что частичное замещение железа марганцем в ВіFeO₃ приводит к изменению спинового (а также, возможно, и зарядового) состояния ионов железа в структуре образующихся при этом твердых растворов, что и обусловливает отмеченные аномалии термо-ЭДС твердых растворов ВіFe_{0.85}Mn_{0.15}O₃.

Температурные зависимости электропроводности и термо-ЭДС сильно коррелированных систем описываются формулами (7, 8)

$$\kappa = \frac{A}{T} \exp\left(-\frac{E_A}{kT}\right) \tag{7}$$

$$S = \frac{k}{e} \left(-\frac{E}{kT} + B \right)$$
(8)

где *E*_A = *E*_S + *E*_m и *E*_S - энергии активации электропроводности и термо–ЭДС, причем величина *E*_S характеризует энергию

возбуждения носителей заряда, а Е_т – энергию активации их переноса [30].

Как видно из данных, представленных в таблице 7, частичное замещение висмута неодимом и железа марганцем в BiFeO₃ приводит к существенному снижению энергии возбуждения носителей заряда и, одновременно, к увеличению энергии активации их переноса, причем электроперенос наиболее затруднен в дизамещенном твердом растворе Bi0.85Nd0.15Fe0.85Mn0.15O3, который характеризуется наибольшей концентрацией ионов-заместителей.

Выводы

Керамическим методом синтезированы твердые растворы на основе феррита висмута Bio.85Ndo.15FeO3, ВіFe0.85 Mn0.15 O3 и Ві0.85 Nd0.15 Fe0.85 Mn0.15 O3, изучены их кристаллическая структура, микроструктура, термическое расширение, магнитные и электротранспортные свойства. Найдено, что образцы Bi_{0.85}Nd_{0.15}FeO₃ и BiFe_{0.85}Mn_{0.15}O₃ имеют ромбоэдрически, а Bi_{0.85}Nd_{0.15}Fe_{0.85}Mn_{0.15}O₃ орторомбически искаженную структуру перовскита и антиферромагнитными полупроводниками являются р-типа, величина электропроводности которых выше, а температура Нееля и коэффициент термо-ЭДС ниже, чем у BiFeO₃, причем наиболее сильное уменьшение термо-ЭДС наблюдается для Mn-содержащих твердых растворов, что, возможно, связано с изменением спинового состояния ионов железа (марганца) в их структуре. Определены значения параметров электропереноса и коэффициентов линейного термического расширения синтезированной керамики.

Благодарности

Авторы выражают благодарность М.В. Томкович (ФТИ им. А.Ф. Иоффе РАН) за проведение электронно-микроскопических исследований. Работа выполнена при частичной поддержке Белорусского республиканского фонда фундаментальных исследований (грант Х13-005).

Литература

1. Калинкин А.Н., Скориков В.М. Пленки и монокристаллы BiFeO3 как перспективный неорганический материал для спинтроники // Журн. неорган. химии. 2010. Т. 55. № 11. C. 1903-1919.

2. Звездин А.К., Пятаков А.П. Фазовые переходы и гигантский магнитоэлектрический эффект в мультиферроиках // Успехи физических наук. 2004. Т. 174. № 4. С. 465-470.

3. Веневцев Ю.Н., Гагулин В.В., Любимов В.Н. Сегнетомагнетики. М.: Наука, 1982. 224 с.

4. Пятаков А.П., Звездин А.К. Магнитоэлектричес-кие материалы и мультифероики // Успехи физических наук. 2012. T. 182. № 6. Ć. 593-620.

5. Троянчук И.О., Бушинский М.В., Чобот А.Н., Мантыцкая О.С., Терешко Н.В. Слабый антиферромагнетизм в мультиферроиках на основе BiFeO3 // Письма в ЖЭТФ. 2009. Т. 89. Вып. 4. С. 204-208.

6. Макоед И.И. Получение и физические свойства мультиферроиков: монография. Брест: БрГУ, 2009. 181 с.

7. Lomanova N.A., Gusarov V.V. Influence of synthesis temperature on BiFeO₃ nanoparticles formation // Nanosystems: physics, chemistry, mathematics. 2013. 4 (5). P. 696-705. 8. Suresh P., Srinath S. Observation of high coercivity

in multiferroic lanthanum doped BiFeO₃ // J. Alloys and Comp. 2013. V. 554. P. 271-276.

9. Sati P., Arora M., Chauhan S., Kumar M., Chhoker S. Effect of Dy substitution on structural, magnetic and optical properties of BiFeO3 ceramics // J. Phys. and Chem. of Solids. 2014. V. 75. V. 105-108.

10. Kothari D., Reddy V.R., Gupta A., Phase D.M., Lakshmi N., Deshpande S.K., Awasthi A.M. Study of the effect of Mn on the BiFeO₃ system // J. Phys.: Condens. Matter. 2007. V. 19. P. 136-202.

11. Kumar A., Yadav K.L. A systematic study on magnetic, dielectric and magnetocapacitance properties of Ni doped bismuth ferrite // J. Phys. and Chem. of Solids. 2011. V. 72. P. 1189-1194.

12. Иванова В.В., Гагулин В.В., Корчагина С.К., Шевчук Ю.А., Богатко В.В. Синтез и свойства твердых растворов системы BiFeO₃-DyMnO₃ // Неорган. матер. 2003. Т. 39. № 7. C. 876-879.

13. Клындюк А.И., Чижова Е.А., Затюпо А.А., Башкиров Л.А., Гусаров В.В., Тугова Е.А. Синтез, структура и физико-химические свойства твердых растворов в квазибинарной системе BiFeO₃-PrCoO₃ // Весці НАН Беларусі. Сер. хім. навук. 2012. № 4. С. 5-9.

14. Затюпо А.А., Башкиров Л.А., Петров Г.С., Лобановский Л.С., Труханов С.В. Магнитные свойства ферритов–кобальтитов $Bi_{1-x}La_xFe_{1-x}Co_xO_3$ (1.0 $\ge x \ge 0.7$) со структурой перовскита // Физика и химия стекла. 2013. Т. 39. № 5. C. 829-839.

15. Клындюк А.И., Чижова Е.А. Структура, тепловое расширение и электрические свойства твердых растворов системы BiFeO₃-NdMnO₃ // Неорган. матер. 2015. Т. 51. № 3. C. 322-327.

16. Клындюк А.И., Чижова Е.А. Влияние замещения висмута неодимом и железа марганцем на диэлектрические свойства перовскитного феррита висмута // Весці НАН Беларусі. Сер. хім. навук. 2015. № 1. С. 7-11.

17. Garder M., Henry W.G., Hoeve G. A magnetic susceptibility balance and temperature dependence of the magnetic susceptibility of copper, silver and gold, 295–975 K // Can. J. Phys. 1960. V. 38. No 12. P. 1595-1613.

18. Труханов С.В., Труханов А.В., Васильев А.Н., Балагуров А.М., Szymczak Н. Магнитное состояние структурно-расслоенного анион-дефицитного манганита $La_{0.70}$ Sr_{0.30} MnO_{2.85} // ЖЭТФ. 2011. Т. 140. Вып. 5. С. 942-950.

19. Klyndyuk A.I., Chizhova Ye.A. Thermoelectric properties of the lavered oxides LnBaCu(Co)FeO_{5+ δ} (Ln = La, Nd,

Sm, Gd) // Funct. Mater. 2009. V. 16. No 1. Р. 17-22. 20. *Клындюк А.И., Чижова Е.А.* Структура и свойс-

тва твердых растворов La_{1-x}Pr_xBaCuFeO_{5+δ} // Физика и химия стекла. 2012. Т. 38. № 2. С. 868-875. 21. *Морозов М.И., Ломанова Н.А., Гусаров В.В.* Особенности образования BiFeO₃ в смеси оксидов висмута и железа (III) // Журн. общ. химии. 2003. Т. 73. Вып. 11. С. 1772-1776.

22. Bernardo M.S., Jardiel T., Peliteado M., Caballero A.C., Villegas M. Reaction pathways in the solid state synthesis of multiferroic BiFeO3 // J. Eur. Ceram. Soc. 2011. V. 31. P. 3047-3053.

23. Михайлов А.В., Грибченкова Н.А., Колосов Е.Н., Кауль А.Р., Алиханян А.С. Масс-спектрометрическое исследование парообразования в системе Bi₂O₃-Fe₂O₃ // Журн. физ. химии. 2011. Т. 85. № 1. С. 31-35.

24. Shannon R.D., Prewitt C.T., Revised Values of Effective Ionic Radii // Acta Crystallogr. 1969. V. 25B. Pt. 5. P. 946-960.

25. Annapu Reddy V., Pathak N.P., Nath R. particle size dependent magnetic properties and phase transitions in multiferroic BiFeO3 nano-particles // J. Alloys Comp. 2012. V. 543. P. 206-212.

26. Кринчик Г.С. Физика магнитных явлений. М.: изд. МГУ, 1976. 367 с.

27. Труханов С.В., Троянчук И.О., Труханов А.В., Фита И.М., Васильев А.Н., Maignan A., Szymczak H. Магнитные свойства анион-дефицитного манганита La_{0.70}Sr_{0.30}MnO₃ в условиях гидростатического давления // Письма в ЖЭТФ. 2006. Т. 83. Вып. 1. С. 36-40.

28. Yasin Shami M., Awan M.S., Anis-ur-Rehman M. Phase pure synthesis of BiFeO₃ nanopowders using diverse precursor via co-precipitation method // J. Alloys and Comp. 2011. V. 509. P. 10139-10144.

29. Koshibae W., Tsutsui K., Maekawa S. Thermopow-er in cobalt oxides // Phys. Rev. B. 2000-I. V. 62. No. 11. P. 6869-6872.

30. Мотт Н., Дэвис Э. Электронные процессы в некристаллических веществах. М.: Мир, 1982. 368 с.