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Doped vanadium oxides phase transitions vapors influence
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Abstract

The methods of vanadium dioxide synthesis were developed. The first one is based on the decomposition of vanadyl oxalate VOC2O4

obtained by the dissolution of vanadium oxide (V) in ethanedioic acid solution with consequent heating. The second one uses the magnetron
sputtering of metallic vanadium with its consequent soft oxidation. Investigations of the transition temperature in vanadium dioxide influence
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y the material doping and adding MoO3, Bi2O3, SnO2, NiO, CuO, Co3O4 as well as by the presence of various gases and vapors
tmosphere were made.
2005 Elsevier B.V. All rights reserved.

. Introduction

The main purpose of the present work is to demonstrate
hat vanadium dioxide and its compounds are suitable can-
idates to contribute to an improvement of chemical sensors
oncerning their sensitivity, selectivity and stability. In order
o realize this, it is proposed to use the effect of a giant
hange of the electrical conductivity within the temperature
egion of phase transition metal–semiconductor. It is well
nown that gas adsorption can modify the concentration
f charge carriers. Hence, gas adsorption at temperatures,
lose to the metal–semiconductor (dielectric) transition
emperature, can vary the energy gap width of VO2 and,
onsequently, remarkably influence its electrical conductiv-
ty. A possibility to obtain a metal–insulator transition by

eans of chemosorption of hydrogen on the surface of VO2
lm was reported already[1].

The mechanism of environmental action on electric pa-
ameters of the matter in the region of phase transition does
ot differ from that for any other region. Essential for these

interactions is the effect of amplifying caused by a liability
crystalline and electronic structures in the transition ran

Vanadium compounds have catalytic activity in oxi
tion reactions. For example, such phases as LixV2O5 and
FexLi2O5 have very high selectivity and catalytic activ
to oxidizing reactions of organic compounds. In particu
such activity is observed in oxidizing reactions of arom
compounds:p-heptane, butane, benzene, toluene, arom
alcohols and aldehydes, of heterogeneous ring compo
sulphonations of benzenes, etc.[2–4]. Application of vana
dium oxides for oxydation of CO and SO2 seems promising
The interaction connected with electrons transfer on the
face of the oxide (catalytic agent) should result in modifi
tion of charge carriers concentration in the bulk too. Th
fore, one can expect, that VO2 and its compounds with oth
oxides might be successfully applied to detect reducing g
and, in particular, vapors of organic compounds, in partic
of alcohol, ketones, aldehydes, benzene in air.

2. Experimental
∗ Corresponding author. Tel.: +375 172232046; fax: +375 172232046.
E-mail address:nickoshi@yahoo.com (N.Y. Shishkin).

There are different methods to form film coatings on the
basis of vanadium oxides. Usually the layers are prepared by
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the pyrolysis of vanadium-organic compounds (pyrolysis of
the acetylacetonate of vanadyl), sol–gel methods, and also
methods of thermal and cathode evaporation[5–7]. In order
to obtain vanadium dioxide we used the method of decom-
position of vanadyl oxalate (VOC2O4) which in its turn had
been obtained by the dissolution of vanadium oxide (V) in
ethanedioic acid solution with heating:

3H2C2O4 + V2O5 → 2VOC2O4 + 2CO2 + 3H2O (1)

2VOC2O4 + O2 → 2VO2 + 4CO2 (2)

The initial films were obtained by dip coating and jet plat-
ing of the solution of vanadyl oxalate on polished substrates
of polycrystalline glass. It is worth mentioning that different
plastifiers were added in the vanadyl solutions in order to
improve the adhesion to the substrate, rheological properties
of the solutions as well as the homogeneity of the substrate
coverage. A vast series of matters were studied for the use in
this role. A composition on the basis of ethanol and polyvinyl
alcohol has shown the best properties from the point of view
of homogeneity of the film plating, its density and the adhe-
sion to the substrate. The plated solutions were dried in the
UHF furnace. The obtained films were annealed in a nitro-
gen atmosphere at different temperatures. The study of the
optimal layer annealing temperature was carried out. The an-
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The soft oxidation technique in an inert atmosphere with
water vapour was designed for making of the oxide layers
based on VO2. Nitrogen bubbled through the bi-distilled wa-
ter with expenditure of 1 l/min and moved in a furnace. The
heating of the substrates with metallic films was carried out
in this furnace. The temperature of annealing was varied from
500 up to 850 K. The temperature range 670–720 K was op-
timal as at lower temperatures oxidation did not take place,
higher temperatures led to destruction of the layer.

Resistance-temperature dependences of the layers by the
two-probe method on air were obtained. A cell with a pos-
sibility to control the atmosphere in it was constructed to
perform these measurements. Ohmic In–Ga electrodes were
formed on the film surface. The pinch platinum electrodes
were delivered to them. The electrical resistance was mea-
sured by a voltmeter with an error not higher than 0.1%. The
measuring temperature interval was 300–520 K. Temperature
in the cell was monitored with calibrated chromel–alumel
thermoelectric couple located closely to the sample.

To study the sensor properties of the obtained layers
we analyzed a temperature dependence of the films re-
sistance in the presence and in the absence of the fol-
lowing gases and organic vapors in the atmosphere: CO
(200–1000 ppm), NH3 (50–400 ppm), NOx (10–1000 ppm),
ethanol (10–50 ppm),p-xylem (10–50 ppm), acetylacetone
(10–50 ppm), benzyl (10–50 ppm), toluene (10–50 ppm),
d 1,4-
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ealing of the films was performed within the tempera
nterval of 650–1100 K. The optimal range was establis
s 820–850 K. This is the range of the best concise of th
arameters and best quality of the phase transition co

ance curve shape.
X-ray phase analysis (XPA) of the matter obtained a

ecomposition of oxalate of vanadyl was performed: Cu
adiation, voltage 30 kV, current 10 mA; the range of an
θ = 15–85◦, speed of 20◦ min−1.

We also used the method of thin films preparation of v
ium dioxide by the magnetron sputtering of metallic va
ium (99.9% purity) with its consequent soft oxidation. T
puttering was carried out in an argon atmosphere (10−2 Pa)
ith a potential of 500 V. The etching current was ab
5–20 mA. The sputtering of the films lasted 300 s. It
bserved, that in the case of longer sputtering a partial o

ion of both the film and the target takes place. The last e
eads to a decrease in the sputtering rate and to a degra
f the film performance.

The influence of substrate properties on the prope
f the films was studied. In this case thin films of va
ium dioxide are favorable objects of study in the v
f a presence of semiconductor to metal phase tr

ion (SMPT). Its presence and the magnitude are the
imonies of a thin film perfection. For samples prep
ion we used the substrates of polycrystalline glass, si
rystalline silicon (1 0 0), oxidized single-crystalline silic
Si/SiO2), glasses, titanate–zirconate of lanthanum–calc
he substrates were treated in the peroxide-ammonia

ure, washed out in distilled water and then desiccated.
eacon (10–50 ppm), dimethyl formamide (10–50 ppm),
ioxane (10–50 ppm)). The study of the gas sensitivit
O2 was carried out on thick-film samples. The paste
ared from an oxide powder and alcohol was plated on
olycristalline glass substrates by the method of printing.
btained films were tempered in a nitrogen atmosphere

. Results and discussion

XPA of the matter obtained after decomposition of
late of vanadyl was carried out by confrontation of va
f angles of the characteristic peaks and the intensiti

nvestigated matter with the values taken from the cat
International Centre for Diffraction Data joint Committ
n Powder Diffraction Standards, ICDD JCPDS). The

ained data clearly shows a presence of vanadium dio
seeFig. 1). Other phases of vanadium oxides are no
ealed.

For a part of the samples tested in the air atmospher
ecrease of resistance with its consequent increase at

emperature is observed that indicates a presence of the
onductor to metal phase transition (SMPT). In the rang
ransition temperatures the resistance of layers varies w
wo orders of magnitude that is in agreement with the
n vanadium dioxide films available in the literature[1]. The
MPT occurs in a temperature range of 300–340 K w

emperature hysteresis about 10–25◦. Vanadium dioxide i
nown as a material with a first-order phase transition,
uch a hysteresis is a characteristic one for the materia
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Fig. 1. X-ray diffraction patterns for V2O3 JCPDS 71-0347 (a), V2O5

JCPDS 75-0457 (b), VO2 JCPDS 73-2362 (c), obtained VO2 (d).

The temperature dependences of resistance for two
heating–cooling cycles are given inFigs. 2–4.

The transition temperatures for all samples were lower,
than for single-crystal samples (∼340 K) [1]. The transition
for the films obtained by magnetron sputtering was more
abrupt than this for the films obtained by the decomposition
of vanadyl oxalate. Temperature dependence of resistance
demostrate, that the substrate used remarkably influences the

Fig. 2. Temperature dependence of the film resistance of vanadium dioxide
obtained by decomposition of vanadyl oxalate.

Fig. 3. Temperature dependence of the resistance film of vanadium diox-
ide obtained by magnetron sputtering with soft oxidation (the substrate is
oxidized monocrystalline silicon).

electrical properties of the films. The best results were ob-
tained when the smooth substrates (a silicon oxide, polished
polycrystalline glass) were used. For such samples the tran-
sition temperature is higher, electrical physical properties are
more stable in time.

It is also necessary to study the film behavior after phase
transition. In our experiments the metallic nature of conduc-
tivity after transition was not observed. The conductivity con-
tinued to increase (Fig. 5). Such a behavior may be due to the
presence of vanadium oxide (V) trace amounts in vanadium
dioxide samples (or its appearance over a partial oxidation on
air of vanadium dioxide during measurements). Then the co-
existence of competitive mechanisms of conductivity is pos-
sible. Thus, exponential increase of the carriers density with
temperature for semiconducting V2O5 overlaps decrease of
conductivity (the power law from temperature) of the metallic
phase of vanadium dioxide.

Other approach in definition of this effect, connected with
disordering of VO2 lattice is also possible. For VOx the Schot-

F diox-
i ate is
p

ig. 4. Temperature dependence of the film resistance of vanadium
de obtained by magnetron sputtering with soft oxidation (the substr
olycrystalline glass (polished).
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Fig. 5. Temperature dependence of the conductivity of vanadium dioxide
thin film samples obtained by magnetron sputtering with soft oxidation (the
substrate is oxidized single-crystalline silicon).

tky imperfections are characteristic. Thus, the disordering in
vanadium dioxide lattice may be described as

(VO2)Ø ↔ 1/2O2 + 2Vv
′ + Vo

•• (3)

or

Ø ↔ 1/2O2 + Vx
o, (4)

further ionization

Vx
o ↔ Vo

•• + 2e (5)

or

Vx
o ↔ Vo

• + e (6)

Thus, with the temperature increase the processes of disor-
dering in the lattice of vanadium dioxide may lead to the
appearance of the carriers, and, consequently, to the increase
of conductivity. Then, the presence of impurities of vana-
dium oxide (V) may result in a disordering of its lattice by
the following equation:

(V2O5)Ø ↔ 1/2O2 + (Vv)x + 2e + Vo
••, (7)

This also contributes to the increase in conductivity.
We also studied an influence of doping on transition tem-

perature in vanadium dioxide. The samples were manufac-
tured by a ceramic process. We prepared the compositions on
t of
M d
a rcala-
t will
p ause
o pairs
i ion
t istra-
t er
v ed. It
i uses
p dding

components with higher valence decreases of the phase tran-
sition temperature (though often only slightly). But in this
way the Fermi level is increased, that initiates acceptor ad-
sorptive processes. At the same time, these components can
be catalysts of preferential directions of reactions. Tungsten
and molybdenum oxides were used as such additives. From
the obtained mixture of oxides we prepared 0.8± 0.1 mm
thick tablets with diameter of 9 mm. The optimal conditions
of the thermal processing were found; particularly, the best
results were obtained for the temperature of 925 K. After the
first processing the samples were chafed, and the firing cycle
was repeated.

To study an influence of the admixtures on the transition
temperature, the temperature dependencies of electric con-
ductivity (ac and dc current modes) and Zeebeck voltage
were measured. The measurements were carried out in the
temperature range of 290–450 K. The upper limit was set in
order to prevent a possible oxidation of vanadium dioxide.
The analysis of the obtained data showed, that no one of the
admixtures mentioned above influences the transition tem-
perature remarkably. Thus, the admixtures of cobalt, tung-
sten and molybdenum decrease the temperature of the SMPT
(several K). The temperature range of the transition reaches
20–25◦. The samples with a small amount of Bi (0.5–5%) and
Sn (0.1–0.5%) have transition temperatures that are slightly
higher than those of the undoped samples. The temperature
r e nar-
r e de-
p nge
o fol-
l s to
b . The
d PT
a ll also
m mix-
t he
e
d too.
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m the
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he basis of VO2 with a different content (0.1–50 mol%)
oO3, Bi2O3, SnO2, NiO, CuO, Co3O4. This dopants an
dditives were selected using a supposition, that the inte

ion of these elements in the lattice of vanadium dioxide
rovoke a magnification of the transition temperature bec
f a possible chemical contraction, breaking vanadium

n dioxide [1]. It is known, that increase of phase transit
emperature, indispensable for the majority of gases reg
ion, is provided by an introduction of elements with low
alence (less than 4). Besides, the Fermi level is decreas
s known from the catalysis electronic theory, that this ca
rocesses of donor adsorption. On the other hand, a
ange of the SMPT for these concentrations appears to b
ow. For the samples doped with tin a week temperatur
endence of electric conductivity within a temperature ra
f 350–370 K was observed. This can be attributed to the

owing competitive processes: first, the conductivity turn
e of a metallic type; second, the admixture is activated
oping level being increased, both the magnitude of SM
nd the transition temperature become smaller. We sha
ention the positive influence of trace amounts of the ad

ures on sintering ability of VO2 ceramics. The results of t
lectrical measurements are presented inFig. 6. When the
oping level increases the SMPT magnitude increases

An interesting behavior of the samples doped with
uth is found: the introduction of small amounts of

ig. 6. Temperature dependence of resistance of the bulk samples o2

oped with SnO2.
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Fig. 7. Temperature dependence of Zeebeck coefficient for the samples of
vanadium dioxide doped with Bi2O3, Co3O4.

dopant results in a strong increase of the Zeebeck coeffi-
cient; however, the effect becomes less remarkable for higher
concentration levels (Fig. 7). The similar behavior is ob-
served in classic doped semiconductors (Ge, Si). The con-
ductance type changes within the range of the phase transi-
tion.

Measurements of the response were performed in a her-
metic unit. The maximum change of the sample resistance
was registered when introducing of the vapor-and-gas mix-
ture with a constant rate of the airflow. The gas sensitivity was
calculated from the obtained data according to the following
expression:

S = R − R0

R0
× 100%, (8)

S′ = R0 − R

R
× 100%, (9)

whereR0 is the sample resistance in the air,R the resis-
tance of the sample if the corresponding substance is present
(both quantities are functions of temperature). Eqs.(8) and
(9) were used for the calculations of the film’s response to
the gases increasing or decreasing its resistance, respecti-
vely.

The gas sensitivity was investigated in the temperature
range of 298–520 K. The VO2 samples added or doped
w
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F
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1 he
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t
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d st re-
s anol

Fig. 8. Time dependence of sensitivity at 100 ppm NOx of the samples VO2
with 10 mol% MoO3 (T= 480 K).

Fig. 9. The sensitivity of the samples VO2 with 50 mol%. NiO vs. temper-
ature at 50 ppm acethylacetone and ethanol. Reduction time 5–10 s.

for VO2 with a high concentration of NiO (50 mol%) and
CuO (10 mol%) (seeFigs. 9 and 10). But no significant influ-
ence of gases and vapors on the phase transition parameters
was registered. Generally, the sensitivity increases with tem-
perature.

Fig. 10. The sensitivity of the samples VO2 with 10 mol% CuO vs. temper-
ature at 50 ppm acethylacetone and ethanol. Reduction time 5–10 s.
ith WO3 (1, 3, and 5 mol%), Bi2O3 (0.5 and 1%) MoO3
5, 10, and 20%), SnO2 (1, 5, and 10%), NiO (5, 10, 2
nd 50%), CuO (0.5, 3, and 10%) were studied. The
ensitivity to NOx was found for the samples with M
ig. 8 demonstrates the dynamic response of the VO2 with
0 mol% Mo for three cycles gas inlet—pumping-out
00 ppm NOx. The film shows a good reproducibility of t
esponse; the film resistance returns to the initial (refere
alue within 5% of accuracy after the atmosphere regen
ion.

No response to CO, NH3, p-xylene, benzene, decan
imethyformamide, 1,4-dioxane was registered. The be
ults were obtained for acethylacetone (50 ppm) and eth
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4. Conclusion

The task to utilize phase transition giant conductance
change for gas sensor device was unsuccessful. The rea-
son is vanadium dioxide structure: in the semiconduc-
tor temperature region it has almost molecular crystalline
structure with localized VV bonds, insensitive to external
impacts. From the other temperature side the metal con-
ductance does not favor substantial charge carriers change
when chemisorption occurs. Besides, we could not increase
SMPT temperature substantially by doping vanadium diox-
ide up to favorable to gas–solid interaction one. This is
also the reason of low sensitivity. But the composite sam-
ples with NiO, CuO, were found to be sensitive to oxygen-
containing VOC vapors (acethylacetone and ethanol) and
with MoO3—to NOx. The probable reason for this is metal
(VO2)–semiconductor (other metal oxide) junctions between
the grains. This problems are the matter of further investiga-
tions.
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