САМОРАСПРОСТРАНЯЮЩИЙСЯ ВЫСОКОТЕМПЕРАТУРНЫЙ СИНТЕЗ КЕРАМИЧЕСКИХ МАТРИЦ НА ОСНОВЕ ОБОГАЩЕННОГО ЦИРКОНИЕМ ПИРОХЛОРА ДЛЯ ИММОБИЛИЗАЦИИ АКТИНИДСОДЕРЖАЩИХ ОТХОДОВ

К.Б. Подболотов
Белорусский государственный технологический университет, Минск, Беларусь podbolotov@belstu.by

Abstract. The paper presents the results of the study on self-propagating high-temperature synthesis of mineral matrices based on phase of pyrochlore $(Y_2Ti_2O_7)$ and zirconia additives for immobilize actinide-containing waste (HLW). Investigations carried out in the system Ti - ZrO_2 - CaO - Y_2O_3 - MenOm (Me = Mo, Fe, Ni, Cr, Mn, Cu) using models HLW. But such oxides as MoO_3 , CuO, MnO_2 and metals reduced from them at high temperatures are exposed to increased ash due to evaporation. There under the perspective is the use of Fe_2O_3 as an oxidant. It is found that the components of HLW do not form an individual crystalline phases and includes as isomorphic impurities in the crystal lattice of pyrochlore, zirconolite and perovskite. A matrix material consisting of two phases – enriched by zirconium pyrochlore, containing HLW elements and metallic iron is produced. Substitution of titanium atoms to zirconium in the pyrochlore lattice is made up to 26 at. %.

Переработка отработавшего ядерного топлива приводит к накоплению большого количества высокоактивных отходов (ВАО), безопасное и долговременное хранение которых представляет сложную научно-техническую проблему. Перспективными с этой точки зрения являются кристаллические матрицы, в которых радионуклиды входят в синтетические высокоустойчивые минералы в виде изоморфных примесей. В ряде работ для иммобилизации актинидсодержащих отходов предлагаются минералоподобные матрицы со структурой типа пирохлора состава $Y_2Ti_2O_7$, которые могут включать в свою структуру значительные количества редкоземельных элементов и актинидов, а также продуктов деления и коррозии. Матрицы на основе $Y_2Ti_2O_7$, в том числе и синтезированные методом СВС, обладают высокой степенью закрепления актинидов, но не обладают достаточной радиационной стойкостью. Радиационная и химическая стойкость матричного материала значительно увеличиваются в случае введения в состав пирохлора $Y_2Ti_2O_7$ циркония.

Целью данной работы является исследование процессов фазообразования при получении методом СВС минералоподобных матриц на основе пирохлора $Y_2Ti_2O_7$, обогащенного цирконием. В рамках работы для достижения поставленной цели решались конкретные задачивведение в структуру пирохлора циркония, замена летучего окислителя оксида молибдена MoO_3 на оксид железа Fe_2O_3 , выбор оптимальных составов с помощью термодинамического расчета, СВС и исследование конечного продукта.

Проведен термодинамический анализ в системе $Ti-ZrO_2-CaO-Y_2O_3-Me_nO_m$ (Me 2 Mo, Fe, Ni, Cr, Mn, Cu), определены адиабатические температуры горения, показана возможность синтеза фаз пирохлора и цирконолита при использовании различных окислителей. Однако при высоких температурах оксиды MoO_3 , CuO, MnO_2 и восстановленные из них металлы подвержены повышенному уносу из-за испарения. В соответствии с этим перспективным представляется использование Fe_2O_3 в качестве окислителя, что предотвращает возможные потери элементов BAO в газовую фазу в виду низкой летучести Fe_2O_3 и более низкой температуры горения. Выявлена зависимость образования и соотношения кристаллических фаз в синтезированной матрице от состава шихты и содержания BAO. Установлено, что компоненты BAO не образуют самостоятельных кристаллических фаз и входят в виде изоморфных примесей в кристаллические решетки пирохлора, цирконолита и перовскита. Корректировка шихтового состава позволила получить матричный материал, состоящий из двух фаз - титанатного пирохлора $Y_2Ti_2O_7$, содержащего элементы BAO, и металлического железа. Замещение атомов титана на цирконой в решетке пирохлора в этом случае составило 26 ат. %.