НССЛЕДОВАНИЕ ПРИЧИН УНОСА С РЕАКЦИОННЫМИ ГАЗАМИ ПРОДУКТОВ ОКИСЛЕНИЯ ЦИКЛОГЕКСАНА И ВОЗМОЖНОСТИ ИХ УЛАВЛИВАНИЯ

Э. И. Левданский, А. И. Карпович, И. М. Плехов, А. И. Ершов

По схеме производства капролактама на Гродненском химическом комбинате реакция окисления циклогексана воздухом происходит в трех последовательно включенных реакторах при температуре 155—165°С, давлении 8—10 ат изб., в качестве катализатора используются соединения кобальта. Окисление происходит в жидкой фазе. Непрореагировавшая часть воздуха вместе с испарившимся циклогексаном по общему коллектору из всех трех реакторов направляется в скруббер, где пары циклогексана, встречаясь с холодным циклогексаном, конденсируются и поступают в первый реактор, а неконденси-

рующиеся газы подаются на свечу.

Согласно проектным данным, кроме указанных выше веществ, с реакционными газами уносится из реакторов 1,32%, или 730 кг/ч, циклогексанона и циклогексанола — целевых продуктов реакции окисления циклогексана. Если учесть, что в реакционной массе, выходящей из последнего реактора и состоящей в основном из циклогексана, содержится только лишь 4-5% циклогексанона и циклогексанола, то 730 кг/ч целевых продуктов, уносимых с реакционными газами, являются значительной потерей ценного продукта — около 23%. Циклогексанон и циклогексанол являются промежуточными продуктами окисления циклогексана. Попав с реакционными газами в скруббер, они конденсируются и снова направляются в реакторы, где частично превращаются в продукты глубокого окисления (кислоты, эфиры, спирты, смолы), что ведет к снижению коэффициента полезного использования сырья (циклогексана).

Для уточнения регламентных данных о составе реакционных газов нами было проделано большое количество анализов, результаты которых в среднем почти полностью совпадают с проектными данными, но несколько отличаются для каждого реактора. По проекту, количество циклогексанона и циклотексанола, уносимое из каждого реактора, должно быть одинаковое. По данным анализа, количество уносимых циклогексанона и циклогексанола из первого реактора составляет в среднем 1,08%, из второго — 1,16% и из третьего — 1,385% общего количества всех уносимых конденсирующихся веществ. Увеличение уноса объясняется тем, что концентрация полезных

продуктов по ходу газа возрастает. По таблице фазового равновесия в системе циклогексан—циклогексанон—циклогексанол с парами, выходящими из третьего реактора, в паровой фазе должно находиться не более 0,45% циклогексанона и циклогексанола, то есть в три раза меньше, чем в действительности. Следовательно, причиной значительных потерь целевых продуктов является механический унос капель реакционной смеси вместе с газами и парами, обусловленный активным барботажем воздуха через слой жидкости, высоким уровнем ее в реакторе, а также значительной скоростью перемещения реакционных газов в отводящем трубопроводе (7,6 м/сек при тавлении 8—10 ат изб.). В случае интенсификации процесса окисления циклогексана возрастут нагрузки по воздуху и жидкости, и капельный унос реакционной смеси будет еще значительнее.

Таким образом, предотвращение или уменьшение уноса циклогексанона и циклогексанола с реакционными газами имест существенное значение, так как это позволит снизить количество образующихся смол и дополнительно получить большое количество целевых продуктов.

Опыты по улавливанию целевых продуктов из реакционных газов были проведены на полупромышленной установке,

схема которой приведена на рисунке.

Реакционные газы подавались в сепаратор-конденсатор *I* от каждого реактора. Первая ступень аппарата представляла собой прямоточно-центробежный сепаратор, где происходило отделение капель жидкости от реакционных газов, на второй ступени — выделение циклогексанона и циклогексанола из реакционных газов при охлаждении.

Для определения эффективности работы сепаратора-конденсатора предусмотрено четыре точки отбора проб: для анализа состава реакционных газов, подаваемых из реакторов в сепаратор-конденсатор; газов, выходящих из него; жидкости, отводимой из первой ступени сепаратора-конденсатора и скон-

денсированной на второй его ступени.

Для конденсации паров в отбираемых пробах в установкепредусмотрен холодильник 2. Расход газов замеряли с помощью дисковой диафрагмы, жидкости — с помощью мерной посуды. Аппарат испытывался при разных нагрузках по газу и давлениях, с охлаждением и без охлаждения на второй ступени. Результаты испытаний приведены в таблице.

На основании полученных данных можно сделать следую-

щие выводы:

1. В парах циклогексана содержится $10 \div 25\%$ капель реакционной смеси, находящейся в данном реакторе.

результаты опытов

	Примочание		Без охлаждения		A	0	CIVILLIA		٨	٠	Без охлаждения	*	۸	A	
	Про пент утав пива ния анон и		19	20	72	67,5	68	27	89	23	51	20	09		
-	Содержани знона 11 а о та в азе, %	а ппа- р та	0.43	0,39	0.27	0,42	0+0	0,53	0 +8	0,94	0,58	0.37	8 0		
		парата	1,08	9 1	1,38	0.1	0	0,1	0 1	1,08	0 1	0,1	0.1		
	Содержание допи и анола "Идости	я сту-	1,69	2,11	3,74	2,78	2,62	16,1	3,51	1,68	1,83	3,19	3 3		
		в сту пень	2,85	2,24	2,00	3.19	3.83	4 22	3,48	2 6	3,52	92	3,62		
	No live tho William crii, oloopahiioli B an apare Faloi, K2,3	2 я ст	8,6	6, 12	12, 12	28,0	36,0	25,1	25,1	19,75	22,1	23,3	11.51		
		ј и сту- пень	25.9	8,34	0.25	0.8	16,0	23,7	25,4	21.0	18,0	00	36.0		
	Номер реактора		2,	2 й	3-#	2 total 2 mail 1	2 hard 2 hard 1 mm	1-10	1-4	-	3 <u>3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4</u>	1-14	255		
	Ckoroctb rasa B narpy 6 kax an napara		3,83	44	4,88	3 85	3,715	4,34	5,27	7.09	3, 165	3,90	4,54		
	Дамение в анпа- рате, кг см²		7.4	6,5	6,5	7.0	7,5	7,3	8,0	6.5	7,8	7,5	7.5		
	12 XO.1 1238 14.3		100	100	110	001	115	130	147	091	100	120	140		

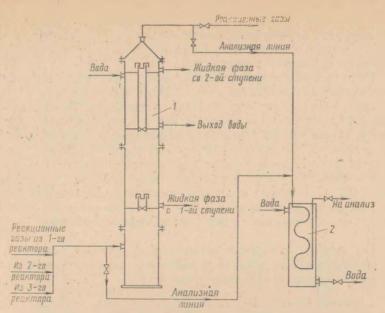


Схема установки для улавливания анола и анона из реакционных газов: — сепаратор-конденсатор; 2—холодильник

2. Эффективность работы сепаратора-конденсатора высока, степень улавливания анона и анола из паров достигает $70 \div 80\%$.

3. Оптимальная скорость паров циклогексана в сепарато-

ре-конденсаторе составляет 3÷5 м/сек.

4. Применение сепаратора-конденсатора позволяет снизить унос анона и анола с парами циклогексана с 1,32 до 0,4 ÷ 0,5%.

На основании исследований разработан проект промыш-

ленного конденсатора высотой 1,2 м, диаметром 650 мм.

Такие размеры сепараторов-конденсаторов позволяют монтировать их прямо на реакторах, что очень важно при отсутствии свободных площадей в цехе.

ПОЛУЧЕНИЕ ПОЛИМЕРОВ НА ОСНОВЕ ОТХОДОВ ПРОИЗВОДСТВА ε-ΚΑΠΡΟЛАКТАМА

И. В. Кулевская, А. С. Корнеев, Г. А. Ткачева, В. Г. Савкин, М. А. Зильберглейт, Я. М. Паушкин

Кубовые остатки производства ε-капролактама на Гродненском химкомбинате до настоящего времени являлись отходом. Целью настоящей работы было установление характера