СТАТИСТИЧЕСКОЕ ОПИСАНИЕ МИКРОСТРУКТУРЫ СФЕРИЧЕСКИХ КРИСТАЛЛИЧЕСКИХ НАНОЧАСТИЦ

Наркевич И.И.*, Фарафонтова Е.В., Унучек К.С.

Белорусский государственный технологический университет 220006, Беларусь, г. Минск, ул. Свердлова 13а

* narkevich@belstu.by

Введение. Для теоретического описания характеристик отдельных наночастиц и наноструктурированных систем, которые являются существенно неоднородными объектами, оказывается эффективным двухуровневый молекулярно-статистический подход [1], позволяющий учесть неоднородное распределение средних чисел заполнения n_i микроячеек объемами ω_i метода условных распределений Л. А. Ротта [2], форма и размеры которых изменяются вблизи границ наночастиц по отношению к их размерам в макроскопически однородных кристаллических системах. При этом используется F_{11} -приближение, учитывающее множество наиболее вероятных состояний конденсированной системы из N молекул в объеме V, причем в каждой микроячейке может содержаться не более одной частицы. Поэтому количество микроячеек M превышает число частиц, так что некоторые микроячейки с определенной вероятностью могут быть вакантными. В результате средние числа заполнения ячеек меньше единицы, а поле их распределения по объему отражает макроскопическую неоднородность наночастицы.

Равновесные функции распределения атомов или молекул вблизи узлов решетки и равновесное поле чисел заполнения n_p объемов ω_p микроячеек находятся в результате решения соответствующей вариационной задачи [3] с помощью приближенного статистического выражения для функционала свободной энергии наночастицы с неоднородным распределением поля плотности $\rho_i = n_i / \omega_i$ [4]:

$$F(\{n_p\},\{\omega_p\}) = \Theta \sum_{i=1}^{M} \left(n_i \ln n_i + (1-n_i) \ln(1-n_i) - \frac{n_i}{2} \ln(\omega_i Q_i) \right).$$
(1)

Здесь $\theta = kT$, Q_i – нормировочный множитель унарной функции.

1. Использование усредненного потенциала Леннард – Джонса в качестве аппроксимирующей формулы для потенциалов средних сил. В случае кристаллических наночастиц функции распределения молекул вблизи узлов имеют сильно выраженные максимумы, что позволяет функции \hat{F}_{11} заменить на вспомогательные функции \hat{F}_{11}^* с равномерным распределением внутри сфер с радиусами b_i , центры которых совпадают с узлами решетки. Параметры b_i подбираем так, чтобы среднеквадратичные отклонения σ_i молекул от узлов были равными для функций \hat{F}_{11} и \hat{F}_{11}^* [4]:

$$\sigma_{i} = \int_{\omega_{i}} r^{2} \hat{F}_{11}(x, y, z) d\omega_{i} = \sqrt{\frac{3}{5}} b_{i}, \quad \hat{F}_{11}(\vec{q}_{i}) = A_{i} \exp\left\{-\beta \sum_{j \neq i}^{M} \varphi_{ij}\left(\vec{\rho}_{i}\right)\right\}, \quad Q_{i} = \int_{\omega_{i}} \exp\left\{-\beta \sum_{j \neq i}^{M} \varphi_{ij}\left(\vec{\rho}_{i}\right)\right\} d\omega_{i}. \quad (2)$$

Здесь $\beta = 1/\theta$, ϕ_{ij} – потенциалы средних сил, $\vec{\rho}_i$ – радиус-вектор молекулы в ячейке ω_i , $\Lambda_i = 1/Q_i$.

Вспомогательная функция \hat{F}_{11} позволяет аналитически усреднить по объему сферы b_i потенциал Леннард – Джонса $\Phi(r)$ с параметрами о и є, который используем в безразмерных переменных ($r^* = r/\sigma$ и $\Phi^*(r) = \Phi(r)/\varepsilon$, далее звездочки опускаем) [4]:

$$\varphi_{ij}(\rho) = n_j \frac{\int_{V_b} \hat{O}(r) E(r-d) dV_b}{\int_{V_b} E(r-d) dV_b} = n_j \frac{I(r,b,d) \Big|_{r_1}^{r_2}}{V(r,b,d) \Big|_{r_1}^{r_2}}.$$
(3)

Здесь E(r - d) - функция Хевисайда учитывает тот факт, что молекулы не могут находиться на расстояниях меньше, чем параметр обрезания <math>d (в расчетах он принимался равным 0,9).

Пределы интегрирования r_1 и r_2 для координаты r зависят от соотношения между расстоянием ρ и параметрами b, d.

Выражения (3) позволяют рассчитывать унарную функцию $\hat{F}_{11}(x, y, z)$ и решать систему интегральных уравнений (2) относительно параметров b_i , определяющих среднеквадратичные отклонения σ_l ($\sigma_l = \sqrt{3/5}b_l$), в ячейках принадлежащих сферам с номерами l (l = 1, 2, ..., 6).

2. Результаты численного расчета параметров наночастицы с неоднородным заданным профилем чисел заполнения микроячеек. Система (2)–(3) решалась методом итераций для сферической наночастицы, содержащей 86 узлов, принадлежащих шести координационным сферам (l = 6). Для заданного профиля чисел заполнения n_l (рисунок 1) при температуре $\theta = 0,4$ и параметра решетки R = 1,12 выполнены расчеты параметров микроструктуры наночастицы, которые приведены в таблице для трех итераций (i = 1, 7, 8). На рисунке 2 изображены профили сечений унарных функций распределения молекул в центральной микроячейке (l = 0) и микроячейках, принадлежащих шести координационным сферам (l = 1, 2, ..., 6), которые получены после восьмой итерации. Соответствующая им зависимость среднеквадратичных отклонений σ_l от радиусов R_l сфер, представлена на рисунке 1.

Рисунок 1. Зависимости чисел n_l и отклонений σ_l для кристаллической наночастицы из M = 87 узлов, имеющей шесть координационных сфер с номерами l при $\theta = 0,4$

1	nl	Отклонения σl			Сомножитель Ql			Смещения Δrl узлов		
		i = 1	i = 7	i = 8	i = 1	i = 7	i = 8	i = 1	i = 7	i = 8
0	0,99	0,060	0,060	0,060	2,559·101 2	6,071 101 1	5,913-1011	0	0	0
1	0,99	0,060	0,080	0,080	1,517·101 2	5,699-109	4,261 109	2,827·10- 3	0,018	0,01

Таблица. Значения параметров унарных функций F_{11} наночастицы

Из рисунка 2 видно, что совершенно симметричный профиль унарной функции в центральной ячейке (l = 0) постепенно деформируется по мере увеличения номера l координационной сферы (l = 1, 2, ..., 6). При этом максимумы функций сдвигаются вправо, что соответствует смещению узлов решетки наночастицы в радиальном направлении, а среднеквадратичные отклонения молекул от новых положений узлов постепенно увеличиваются так, что при l = 6 часть унарной функции оказывается за пределами примитивной недеформированной ячейки.

[1] I. I. Narkevich. Phys. 112 A. 167 (1982)

[2] L. A. Rott, V. S. Vikhrenko. Fortschr. Phys. 23, 3. 133 (1975).

[3] И. И. Наркевич, Г. С. Бокун, В. С. Вихренко. V Конгресс физиков Беларуси: сб. науч. груд, 27–30 окт. 2015., Минск, 24 (2015)

[4] И. И. Наркевич, Е. В. Фарафонтова. Актуальные проблемы физики твердого тела: сб. докл. Междунар. науч. конф., 22–25 нояб. 2016 г., Минск, 2, 207 (2016)