ФИЗИКОХИМИЯ ПОВЕРХНОСТИ И ЗАЩИТА МАТЕРИАЛОВ. 2021, том 57, № 3, с. 312–321

НОВЫЕ ВЕЩЕСТВА, МАТЕРИАЛЫ И ПОКРЫТИЯ

УДК 621.794.61+621.794.5

ИЗУЧЕНИЕ КОРРОЗИОННОГО ПОВЕДЕНИЯ МОДИФИЦИРОВАННЫХ АНОДНО-ОКСИДНЫХ ПОКРЫТИЙ НА СПЛАВЕ АЛЮМИНИЯ АДЗ1

© 2021 г. М. А. Осипенко^{1, *}, Д. С. Харитонов^{2, **}, И. В. Макарова³, В. И. Романовский⁴, И. И. Курило¹

¹Белорусский государственный технологический университет, ул. Свердлова, 13а, Минск, 220006 Беларусь ²Jerzy Haber Institute of Catalysis and Surface Chemistry of Polish Academy of Sciences, 30-239, Niezapominajek, 8, Krakow, Poland ³Lappeenranta University of Technology, FI-53850, Skinnarilankatu, 34, Lappeenranta, Finland ⁴Институт общей и неорганической химии Национальной академии наук Беларуси, ул. Сурганова, 9/1, Минск, 220072 Беларусь *e-mail: marikaosipenko@gmail.com **e-mail: dmitry.kharitonov@ikifp.edu.pl Поступила в редакцию 24.08.2020 г. После доработки 10.12.2020 г. Принята к публикации 12.01.2021 г.

Методами сканирующей электронной микроскопии, потенциодинамической поляризации, электрохимической импедансной спектроскопии, а также испытаниями в камере соляного тумана установлены зависимости защитных свойств анодно-оксидных покрытий на сплавах алюминия АД31, модифицированных нитратами магния, калия и некоторых 3*d*-элементов, от составов растворов уплотнения и параметров финишной обработки. Предложен механизм формирования модифицированных анодно-оксидных покрытий в процессе уплотнения и последующей термической обработки.

Ключевые слова: сплав АД31, анодирование, наполнение, нитраты металлов, термическая обработка **DOI:** 10.31857/S0044185621030177

введение

В последние десятилетия особое внимание уделяется разработке легких, долговечных металлических материалов, обладающих высокими механическими и антикоррозионными свойствами. По этим показателям сплавы алюминия обладают значительными преимуществами перед другими широко применяемыми в технике металлами, например, сплавами магния.

Естественный анодно-оксидный слой, образующийся на поверхности сплавов алюминия при контакте с влагой и воздухом, обеспечивает достаточно хорошую антикоррозионную защиту во многих слабоагрессивных средах [1]. Тем не менее, при их промышленном использовании достаточно часто необходима более надежная антикоррозионная защита. Для этих целей широко применяется электрохимическое наращивание анодно-оксидного покрытия (АОП) с необходимой структурой, толщиной и твердостью.

Толщина и структура АОП определяются параметрами процесса анодирования: типом электролита, величиной напряжения или плотности тока, температурой, наличием перемешивания и др. [2]. Наиболее распространено анодирование в растворах кислот, в результате которого образуется покрытие, состоящее из внутреннего беспористого и внешнего пористого слоев [3]. Увеличение толщины АОП происходит с сохранением пористости и требует последующей герметизации (уплотнения, финишной обработки) для увеличения коррозионной устойчивости [4].

Традиционно уплотнение АОП проводят в горячей дистиллированной воде или растворах соединений хрома(VI). Однако перспективным является применение электролитов, содержащих менее опасные соединения [5]. В настоящее время разработан ряд новых способов и электролитов уплотнения АОП. Наиболее часто в промышленности используют способ высокотемпературного уплотнения в растворах фторида никеля [6]. Чахбун, Рокка и др. [7] предложили химическое уплотнение пористого оксидного слоя смесью солей Zr IV) и Cr(III), что позволило повысить коррознонную стойкость поверхности примерно в 300 раз по сравнению со стандартным гидротермическим уплотнением. Синвэнь Юй и Чунянь Цао [8] показали эффективность использования для уплотнения АОП нитрата церия. В работе [9] была показана эффективность использования для уплотнения АОП перманганата калия.

Таким образом, практический интерес вызывает поиск экологически безопасных и экономически целесообразных растворов уплотнения для получения на алюминиевых сплавах модифицированных анодно-оксидных покрытий.

Целью данной работы являлось изучение влияния составов электролитов уплотнения и параметров финишной обработки на коррозионное поведение анодно-оксидных покрытий на сплаве алюминия АД31, модифицированных кальцием, магнием и некоторыми металлами 3*d* группы.

МЕТОДИКА ЭКСПЕРИМЕНТА

В качестве объектов исследования в данной работе был выбран сплав алюминия марки АД31 (АА6063). Анодирование проводили с использованием источника тока Элатек Б5-80 в течение 40 мин при комнатной температуре (~22°С) и плотности тока 1 А/дм² в сернокислом электролите, содержащем 2.0 моль/дм³ H₂SO₄, материал катодов – свинец. Перед проведением процесса образцы подготавливали в соответствии с ГОСТ 9.402-2004. Последующее уплотнение АОП проводили методом горизонтального погружения оксидированных образцов в рабочие растворы, содержащие одну из солей; Mg(NO₃)₂, Ca(NO₃)₂, Zn(NO₃)₂, Ni(NO₃)₂, Co(NO₃)₂ или Cu(NO₃)₂ в количестве 0.2 моль/дм³. Температура растворов составляла 100 ± 1°С, время уплотнения – 20 мин. После уплотнения образцы промывали в дистиллированной воде и сушили при помощи термовоздуходувки.

Финишную термическую обработку уплотненных образцов проводили в муфельной печи при температуре $300 \pm 1^{\circ}$ С, время обжига — 30 мин.

Элементный состав и морфологию покрытий изучали методами сканирующей электронной микроскопии (СЭМ) и энергодисперсионного рентгеновского микроанализа (EDX) с использованием микроскопа JEOL JSM-5610 LV, оснащенного системой химического микрорентгеноспектрального анализа EDX JED-2201.

Оценку коррозионной стойкости полученных покрытий в 0.5 М растворе хлорида натрия проводили с использованием потенциостата/гальваностата PGSTAT 302N (Methrom Autolab), оснащенного модулем импеданса FRA32M. В исследованиях использовали насыщенный хлоридсеребряный электрод в качестве электрода сравнения и платиновую сетку в качестве вспомогательного электрода. Потенциодинамические поляризационные кривые снимали в диапазоне потенциалов от -300 до +300 мВ от стационарного потенциала, скорость развертки потенциала составляла 1 мВ/с.

Спектры импеданса регистрировали в диапазоне частот $10^5 - 10^{-2}$ Гц с амплитудой колебаний тока 10 мВ. Анализ спектров, подбор эквивалентных схем и расчет параметров их элементов проводили с использованием ПО "ZView 3.2" и "Nova 2.1".

Исследования полученных покрытий в камере соляного тумана S120is (ASCOTT) проводили в соответствии с ASTM B117–16. Испытанию подвергали одну сторону образца, оборотную изолировали кремнийорганическим лаком KO-85. Испытания проводили в 5% NaCl в течение 510 ч при температуре 35 ± 2 °C. Для анализа состояния поверхности образцы периодически вынимали из камеры, промывали дистиллированной водой, сушили и фотографировали цифровой камерой Nikon D60.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

В процессе анодирования в растворе серной кислоты на поверхности сплава АД31 формировалось АОП серого цвета толщиной около 20 мкм. Микрофотографии поверхности полученных АОП, уплотненных в растворах $Mg(NO_3)_2$, $Ca(NO_3)_2$, $Zn(NO_3)_2$, $Ni(NO_3)_2$, $Co(NO_3)_2$, $Cu(NO_3)_2$ без и с последующей термической обработкой представлены на рис. 1 и рис. 2 соответственно.

Как видно из анализа микрофотографий, уплотнение АОП в растворах исследуемых нитратов приводит к формированию покрытий с большим количеством микровключений (рис. 1а–1д). Для всех покрытий характерна неоднородная структура, при этом на поверхности некоторых образцов присутствуют углубления и трещины.

Исследуемый сплав АД31 содержит в своем составе легирующие добавки в виде анодных и катодных интерметаллических частиц [9-12]. Селективное растворение данных частиц в процессе анодирования может оказывать существенное влияние на микроструктуру АОП. Различие химического состава алюминиевой матрицы и интерметаллических частиц сплава приводит к изменению морфологии пор, появлению дефектов и трещин, вызванных избыточными остаточными внутренними напряжениями в сформированном оксидном слое [12-14]. Необходимо отметить, что предварительная промывка слоя АОП дистиллированной водой приводит к тому, что на начальном этапе уплотнения температура в глубине пор меньше, чем у поверхности, что может способствовать возникновению механических напряжений и растрескиванию АОП [14-16].

Термическая обработка уплотненных АОП может приводить к кристаллизации аморфного

Рис. 1. Микрофотографии АОП, уплотненных в 0.2 М растворах: (a) Mg(NO₃)₂, (б) Ca(NO₃)₂, (в) Zn(NO₃)₂, (г) Ni(NO₃)₂, (д) Co(NO₃)₂, (e) Cu(NO₃)₂.

Рис. 2. Микрофотографии АОП, уплотненных в 0.2 М растворах: (a) $Mg(NO_3)_2$, (b) $Ca(NO_3)_2$, (b) $Zn(NO_3)_2$, (г) $Ni(NO_3)_2$, (д) $Co(NO_3)_2$, (е) $Cu(NO_3)_2$ после обжига в течение 30 мин при температуре 300°С.

оксидного слоя и модифицирующей добавки, оказывая значительное влияние на микроструктуру и защитные свойства сформированных покрытий. На микрофотографиях поверхности образцов после обжига при температуре 300°С в течение 30 мин заметно увеличение обшей неоднородности поверхности покрытий, появление локальных дефектов и увеличение количества микротрещин (рис. 2). Это, вероятно, объясняется увеличением хрупкости покрытия и его растрескиванием в процессе обжига [16, 17].

Анализ элементного состава модифицированных АОП методом EDX показал (табл. 1), что сформированные АОП преимущественно состоят из алюминия, кислорода и серы. Значительное содержание серы в структуре покрытия обуслов-

ФИЗИКОХИМИЯ ПОВЕРХНОСТИ И ЗАЩИТА МАТЕРИАЛОВ ТОМ 57 № 3 2021

ИЗУЧЕНИЕ КОРРОЗИОННОГО ПОВЕДЕНИЯ

Условия обработки	Элементный состав поверхности АОП, мас. %								
	Al	S	0	Mg	Ca	Zn	Ni	Со	Cu
Mg(NO ₃) ₂	63.3	10.4	26.0	0.3	_		_	-	
$Ca(NO_3)_2$	66.2	11.5	21.9	-	0.4	—	-	-	_
$Zn(NO_3)_2$	52.5	15.7	18.4	_	_	13.4		-	-
$Ni(NO_3)_2$	58.6	18.2	15.0	-	_	_	8.2	-	_
$Co(NO_3)_2$	56.6	17.3	16.0	-	_	_	—	10.1	_
$Cu(NO_3)_2$	57.7	17.1	19.1	-	—	-	-	-	6.1
Mg(NO ₃) ₂ + обжиг	59.9	12.4	27.1	0.6	_	-	-	-	- 1
Ca(NO ₃) ₂ + обжиг	63.5	12.8	23.0	_	0.7	_		_	-
Zn(NO ₃) ₂ + обжиг	52.9	13.4	19.9	-	-	13.8	-	_	-
Ni(NO ₃) ₂ + обжиг	54.2	20.6	16.4	_	_	_	8.8	_	-
$Co(NO_3)_2 + oбжиг$	51.9	18.7	18.8	_	-	_	-	10.6	_
Cu(NO ₃) ₂ + обжиг	54.2	19.5	19.9		-	_	-		6.4

Таблица 1. Элементный состав поверхности сплава АДЗ1 после анодирования и наполнения в растворах нитратов

лено использованием сернокислого электролита анодирования. Содержание основного компонента модифицирующего раствора (металла) в структуре АОП составило от 0.30 до 13.4 мас. % в зависимости от состава электролита уплотнения. Проведение термической обработки при температуре 300°С приводит к увеличению содержания модифицирующего компонента в структуре покрытия на 0.30–0.50 мас. %.

Коррозионную стойкость АОП изучали электрохимическими методами. Потенциодинамические поляризационные кривые полученных АОП представлены на рис. 3. Уплотнение в растворах нитратов оказывает значительное влияние на значения бестокового потенциала образцов АОП в 0.5 М растворе NaCl. Для всех образцов АОП, за исключением покрытий, уплотненных в растворах $Mg(NO_3)_2$ и $Cu(NO_3)_2$, наблюдалось смещение бестокового потенциала в электроположительную область по сравнению с образцом без уплотнения. Это свидетельствует об эффективном внедрении модифицирующих компонентов в структуру АОП.

В случае уплотнения в растворе $Cu(NO_3)_2$ значение бестокового потенциала практически не изменилось, а в растворе $Mg(NO_3)_2$ – сместилось

Рис. 3. Потенциодинамические поляризационные кривые образцов АОП в 0.5 M растворе NaCl: составы 0.2 M растворов электролитов уплотнения АОП: $1 - Mg(NO_3)_2$, $2 - Ca(NO_3)_2$, $3 - Zn(NO_3)_2$, $4 - Ni(NO_3)_2$, $5 - Co(NO_3)_2$, $6 - Cu(NO_3)_2$, 7 - 6e3 уплотнения. (а) До обжига, (б) после обжига.

ФИЗИКОХИМИЯ ПОВЕРХНОСТИ И ЗАЩИТА МАТЕРИАЛОВ том 57 № 3 2021

ОСИПЕНКО и др.

Условия обработки	<i>a_k</i> , B	$ b_k , \mathbf{B}$	<i>b</i> _{<i>a</i>} , B	<i>a_a</i> , B	$i_{\text{корр}}, A \text{см}^{-2}$	$E_{\text{kopp}}, \mathbf{B}$	EI, %	
Mg(NO ₃) ₂	-0.010	0.705	0.007	-0.519	5.99×10^{-12}	-0.250	99.9	
$Ca(NO_3)_2$	-0.009	0.218	0.009	-0.032	7.39×10^{-11}	-0.697	99.903	
$Zn(NO_3)_2$	-0.014	0.462	0.021	-0.118	1.18×10^{-10}	-0.476	99.846	
$Ni(NO_3)_2$	-0.023	0.323	0.011	-0.026	1.43×10^{-9}	-0.744	98.128	
$Co(NO_3)_2$	-0.016	0.452	0.009	-0.268	4.12×10^{-8}	-0.457	46.073	
$Cu(NO_3)_2$	-0.011	0.483	0.022	-0.303	2.95×10^{-6}	-0.378		
Mg(NO ₃) ₂ + обжиг	-0.021	0.370	0.015	-0.020	1.26×10^{-10}	-0.687	99.8	
Са(NO ₃) ₂ + обжиг	-0.005	0.481	0.014	-0.332	2.65×10^{-8}	-0.364	65.314	
Zn(NO ₃) ₂ + обжиг	-0.020	0.482	0.020	-0.191	3.76×10^{-8}	-0.462	50.785	
Ni(NO ₃) ₂ + обжиг	-0.005	0.481	0.014	-0.332	2.65×10^{-8}	-0.364	65.314	
Со(NO ₃) ₂ + обжиг	-0.021	0.511	0.017	-0.261	2.82×10^{-7}	-0.423		
Cu(NO ₃) ₂ + обжиг	-0.032	0.586	0.015	-0.350	9.29×10^{-6}	-0.377	_	
Без уплотнения	-0.927	0.072	0.0801	-0.159	7.64×10^{-8}	-0.408	-	

Таблица 2. Электрохимические параметры, полученные из анализа потенциодинамических поляризационных кривых

в электроотрицательную область на 150 ± 5 мВ. Для всех образцов АОП, за исключением уплотненных в растворе Cu(NO₃)₂, наблюдается уменьшение значений плотностей токов коррозии, а, следовательно, увеличение защитных свойств по сравнению с образцом без уплотнения (табл. 2). Это объясняется заполнением модифицирующим раствором пор АОП, образующихся в процессе сернокислого анодирования. Уплотнение обеспечивает закупоривание пор и герметизацию оксидного слоя поверхности образца. Наименьшие значения плотности тока коррозии были получены для образцов АОП, уплотненных в растворах нитратов магния, кальция и цинка (5.99 × 10⁻¹², 7.39 × 10⁻¹¹ и 1.18 × 10⁻¹⁰ А/см² соответственно).

Защитный эффект модифицирующих растворов уплотнения, вероятно, обусловлен гидролизом нитратов с образованием малорастворимых основных солей, закупоривающих поры АОП

Проведение термической обработки модифицированных АОП значительно изменяет их коррозионное поведение (рис. 3б). В данном случае значения бестокового потенциала образцов в 0.5 М растворе NaCl отличаются не более чем на 50 \pm 5 мВ по сравнению с образцом без уплотнения, за исключением образца, уплотненного в растворе Mg(NO₃)₂, для которого бестоковый потенциал смещается в электроположительную сторону на 280 \pm 5 мВ. Анализ полученных поляризационных кривых показал, что термообработка приводит к увеличению значений плотностей токов коррозии по сравнению с образцами без термообработки и, соответственно, снижению защитной способности покрытий. Это может быть связано с растрескиванием поверхности в результате теплового воздействия. Появление дефектов приводит к облегчению проникновения хлорид-ионов в структуру АОП, что ускоряет его коррозионное разрушение.

Наибольшим значением плотности тока коррозии (табл. 2), а, следовательно, наименьшей коррозионной устойчивостью обладают образцы, уплотненные в растворах нитратов меди и кобальта, для которых плотности тока коррозии *i*корр равны соответственно 2.95×10^{-6} и 4.12×10^{-8} A/см². Это может быть связано с тем, что обработка в горячих растворах уплотнения приводит к усилению процессов гидролиза модифицирующих компонентов и образованию в порах их основных солей и гидроксидов. Длительное термическое воздействие приводит к разложению присутствующих в порах соединений и образованию соответствующих оксидов. Так как образующиеся частицы оксидов обладают низкой адгезионной способностью к поверхности АОП, а их размеры сопоставимы с размерами пор, то они не обеспечивают полного закрытия пор, что снижает коррозионную стойкость АОП.

Эффективность уплотнения АОП оценивали по значениям защитного эффекта, рассчитанного по формуле [17, 18]:

$$EI,\% = \frac{i_{\text{kopp}}^0 - i_{\text{kopp}}}{l_{\text{kopp}}^0} \times 100,$$
(1)

где $i_{\text{корр}}^0$, $i_{\text{корр}}$ — значения плотностей токов коррозин образца сравнения (анодированный сплав

Рис. 4. Результаты импедансной спектроскопии в виде диаграмм Найквиста. Составы 0.2 М растворов электролитов уплотнения АОП: $1 - Mg(NO_3)_2$, $2 - Ca(NO_3)_2$, $3 - Zn(NO_3)_2$, $4 - Ni(NO_3)_2$, $5 - Co(NO_3)_2$, $6 - Cu(NO_3)_2$, 7 - 6ез уплотнения. (а) До обжига, (б) после обжига.

алюминия без уплотнения) и модифицированного образца соответственно.

Как видно из данных табл. 2, для уплотненных в растворах $Mg(NO_3)_2$, $Ca(NO_3)_2$, $Zn(NO_3)_2$, $Ni(NO_3)_2$ образцов без последующей термообработки ингибирующий эффект составляет $\approx 99\%$. Для АОП, модифицированных в растворах $Co(NO_3)_2$, $Cu(NO_3)_2$, он значительно ниже и достигает отрицательных значений. Это свидетельствует о нецелесообразности применения финишной термообработки при формировании АОП на сплавах алюминия.

Результаты импедансной спектроскопии полученных образцов представлены на рис. 4 в виде лиаграмм Найквиста. Для образцов АОП, модифицированных в исследуемых растворах уплотнения, можно выделить две временные константы (рис. 4а). Первая константа в области высоких и средних частот представляет собой полуокружность, что характерно для электрохимических процессов с лимитирующей стадией переноса заряда. В области низких частот на спектрах всех модифицированных образцов присутствует участок спектра, наклоненный к оси абсцисс под углом 45°, что характерно для процессов с лимитирующей стадией диффузии. В процессе анодирования и уплотнения пористый слой АОП заполняется водными электролитами, характеризующимися высокими значениями электрической проводимости [13, 14]. В связи с этим, верхней границы используемого диапазона частот может быть недостаточно для регистрации отклика внешнего пористого слоя АОП, а полученная зависимость реальной и мнимой частей импеданса

от частоты описывает коррозионные процессы в глубине пор.

Термообработка образцов приводит к изменению характера спектров импеданса: на диаграммах Найквиста можно выделить одну временную константу в форме полуокружности (рис. 46). Полученные спектры описывают сопротивление и емкостной отклик барьерного слоя АОП, что характерно для термообработанных покрытий [16, 17].

Экспериментальные данные описывали эквивалентными схемами, в которых: R_s — сопротивление ление электролита, Ом см²; R_1 — сопротивление слоя АОП, Ом см²; СРЕ₁ — элемент постоянной фазы, описывающий емкостной отклик слоя АОП; W — элемент Варбурга. Импеданс элемента постоянной фазы описывается двумя параметрами: константой Y_1 , Ом⁻¹ см⁻² сⁿ, и математическим фактором *n*. Диффузионный элемент Варбурга включает в себя активную W_R , Ом см², и реактивную W, Ом⁻¹ см⁻² сⁿ, части, а также математический фактор n = 0.5. Результаты подбора параметров эквивалентных схем представлены в табл. 3.

Сравнение значений сопротивления пористого слоя АОП (R_1) показало, что для образцов без обжига этот параметр значительно больше, чем для обработанных образцов, что свидетельствует о большем защитном эффекте и согласуется с данными поляризационных исследований.

Эффективность уплотнения АОП образцов оценивали по значениям защитного эффекта, рассчитанного по формуле:

ОСИПЕНКО и др.

Вид обработки	R_1 , Om cm ²	Y_1 , $Om^{-1} cm^{-2} c^n$	<i>n</i> ₁	W_R , Om cm ²	$W, OM^{-1} CM^{-2} C^{n}$	EI, %
Mg(NO ₃) ₂	372680	3.302×10^{-8}	0.812	380 960	0.798	93.04
Ca(NO ₃) ₂	351580	1.014×10^{-8}	0.864	371380	0.531	92.74
$Zn(NO_3)_2$	212050	1.2232×10^{-8}	0.832	340 960	0.407	90.51
$Ni(NO_3)_2$	158690	3.553×10^{-8}	0.822	277 770	0.880	87.98
$Co(NO_3)_2$	143340	3.4438×10^{-8}	0.787	238700	0.314	86.27
Cu(NO ₃) ₂	83017	1.515×10^{-8}	0.780	213970	0.710	82.34
Mg(NO ₃) ₂ + обжиг	253010	5.189×10^{-7}	0.753	-	-	79.27
Ca(NO ₃) ₂ + обжиг	233010	1.4554×10^{-7}	0.690		_	77.45
Zn(NO ₃) ₂ + обжиг	135050	2.6536×10^{-7}	0.588		_	61.17
Ni(NO ₃) ₂ + обжиг	59457	8.1454×10^{-7}	0.641	_	_	11.8
Со(NO ₃) ₂ + обжиг	51504	7.8932×10^{-7}	0.644		-	-
Cu(NO ₃) ₂ + обжиг	32 581	2.1329×10^{-7}	0.865	_	-	-
Без уплотнения	52436	2.2688×10^{-7}	0.871	-	-	-

Таблица 3. Параметры эквивалентных схем, полученные из анализа спектров импедансной спектроскопии

$$EI,\% = \frac{(R_{\rm l} + W_{\rm R}) - R_{\rm l}^0}{(R_{\rm l} + W_{\rm R})} \times 100,$$
(2)

где $(R_1 + W_R)$, R_1^0 — значения сопротивление слоя АОП модифицированного образца и образца сравнения (анодированный сплав алюминия без уплотнения) соответственно.

Все полученные образцы также подвергались ресурсным испытаниям в камере соляного тумана в течение 510 ч. На рис. 5 представлены фотографии образцов сплава алюминия АД31 до и после испытаний. В результате уплотнения на поверхности формируется оксидная пленка с характерным матовым окрасом, интенсивность которого уменьшается с увеличением времени коррозионных испытаний в камере соляного тумана. Уплотненные термически не обработанные образцы показали высокую устойчивость в хлоридсодержащей среде. Даже после 510 ч испытаний структура их поверхности практически не изменилась, очагов коррозии не зафиксировано.

В свою очередь, для термически обработанных образцов уже после 48 ч коррозионных испытаний на поверхности присутствует большое количество очагов питтинговой коррозии, а через 510 ч практически вся поверхность образцов покрыта большим количеством продуктов коррозии белого цвета.

На основании результатов проведенных исследований был предложен механизм уплотнения оксидного слоя, полученного на сплаве АД31 в ходе сернокислого анодирования (рис. 6а).

Использование серной кислоты при анодировании обусловливает наличие в структуре АОП значительного количества сульфат-ионов, которые в процессе уплотнения АОП нитратом кальция могут вступать в реакцию ионного обмена с ионами Ca²⁺ и закрывать поры образующимся малорастворимым сульфатом (рис. 6б):

$$Ca^{2+} + SO_4^{2-} \rightarrow CaSO_4. \tag{3}$$

Обжиг АОП, модифицированных солями кальция, приводит к формированию в порах "мертвого гипса".

Нитраты и сульфаты двухвалентных металлов, образованные сильной кислотой и слабым основанием, активно подвергаются гидролизу с образованием соответствующего катиона MeOH⁺:

$$Me^{2+} + H_2O \iff MeOH^+ + H^+.$$
 (4)

Так как значение константы электролитической диссоциации гидроксида меди по второй ступени составляет $K_{\rm g} = 10^{-7}$, что на 2–3 порядка меньше, чем для гидроксидов других рассматриваемых металлов, соли меди подвергаются гидролизу в большей степени. Нагрев растворов уплотнения приводит к усилению процессов гидролиза, а также способствует разложению образующихся малорастворимых оснований и основных солей с образованием соответствующих оксидов и средних солей.

$$Me(OH)_2 \longrightarrow MeO + H_2O,$$
 (5)

$$(MeOH)_2SO_4 \rightarrow MeSO_4 + MeO + H_2O, \quad (6)$$

$$2MeOHNO_3 \rightarrow Me(NO_3)_2 + MeO + H_2O.$$
(7)

Образующиеся соли меди, цинка, никеля и кобальта хорошо растворимы в воде, а их оксиды ха-

ИЗУЧЕНИЕ КОРРОЗИОННОГО ПОВЕДЕНИЯ

Рис. 5. Фотографии образцов после исследований в камере соляного тумана.

рактеризуются низкой адсорбционной способностью по отношению к оксиду алюминия. В результате образующиеся соединения этих металлов могут переходить из пор в раствор с образованием дефектов в бемитной структуре оксидного слоя. При этом пора остается незакрытой, что объясняет процесс диффузии агрессивных хлорид-ионов к алюминиевой матрице (рис. 6в).

При использовании для уплотнения растворов нитрата магния в составе модифицированных АОП формируются малорастворимые гидроксиды и оксиды магния с достаточно высокой адсорбционной способностью к пористому слою оксида алюминия. Это приводит к формированию более плотных АОП, обеспечивающих надежную защиту алюминиевой подложки от агрессивного воздействия окружающий среды.

Последующая термическая обработка уплотненных АОП способствует разложению присутствующих в порах солей и образованию дополнительных количеств модифицирующих оксидов исследуемых металлов. Однако из-за существенной разности коэффициентов объемного расширения алюминиевой матрицы и сформированного покрытия термическая обработка приводит к растрескиванию АОП и образованию в их структуре локальных дефектов (рис. 6г), что в целом существенно снижает защитные свойства поверхности.

ВЫВОДЫ

1. Согласно данным СЭМ, в процессе уплотнения анодированных сплавов алюминия АД31 на поверхности образцов формируются покрытия с большим количеством микровключений. Проведение последующей термической обработки приводит к увеличению общей неоднородности поверхности покрытия, появлению локальных дефектов и увеличению количества микротрещин в структуре покрытия, что объясняется существенным различием значений коэффициентов теплового расширения алюминиевой матрицы и оксидного слоя.

319

Рис. 6. Механизм уплотнения АОП.

2. Результаты EDX анализа показали, что основными компонентами сформированных покрытий являются алюминий, кислород и сера. Содержание модифицирующих металлов в структуре AOП составляло от 0.30 до 13.40 мас. % в зависимости от состава электролита уплотнения. Проведение термической обработки при температуре 300°С приводит к увеличению содержания модифицирующего компонента в структуре покрытия на 0.30–0.50 мас. %.

3. Поляризационные исследования показали, что для АОП, уплотненных в растворах $Mg(NO_3)_2$, $Ca(NO_3)_2$, $Zn(NO_3)_2$, $Ni(NO_3)_2$, ингибирующий эффект составляет ≈99%. Последующая термическая обработка негативно сказывается на коррозионной устойчивости образцов (защитный эффект не превышает 65%), что обусловлено растрескиванием АОП и образованием в их структуре локальных дефектов.

4. Испытания в камере соляного тумана в течение 510 ч показали, что для образцов АОП, модифицированных катионами кальция, магния и некоторых переходных 3*d*-элементов, в отсутствии последующей термической обработки очагов коррозии не обнаружено. Для модифицированных АОП, термически обработанных при температуре 300°С в течение 30 мин, уже через 48 ч испытаний на поверхности зафиксированы очаги точечной коррозии, а через 510 ч — практически вся поверхность образцов была покрыта большим количеством продуктов коррозии белого цвета.

СПИСОК ЛИТЕРАТУРЫ

- Evertsson J., Bertram F., Rullik L., Harlow G., Lundgren E. Anodization of Al (100), Al (111) and Al Alloy 6063 studied in situ with X-ray reflectivity and electrochemical impedance spectroscopy // J. Electroanal. Chem. 2017. V. 799. P. 556–562.
- Stojadinović S., Vasilić R., Kasalica B., Belća I., Zeković L. Luminescence During the Electrochemical Oxidation of Aluminum. In: Djokić S. (eds) Electrodeposition and Surface Finishing. Modern Aspects of Electro-

ФИЗИКОХИМИЯ ПОВЕРХНОСТИ И ЗАЩИТА МАТЕРИАЛОВ том 57 № 3 2021

chemistry. 2014. V. 57. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0289-7 5.

- 3. Zhang F., Nilsson J., Pan J. In Situ and Operando AFM and EIS Studies of Anodization of Al 6060: Influence of Intermetallic Particles // J. Electrochemical Society. 2016. V. 163. № 9. P. C609–C618.
- Jeong C., Lee J., Sheppard K., Choi C. Air-Impregnated Nanoporous Anodic Aluminum Oxide Layers for Enhancing the Corrosion Resistance of Aluminum // Langmuir. 2015. V. 31. P. 11040–11050.
- Hao L., Cheng R. Sealing processes of anodic coatings -Pa.t. Pre.ent. and Future // Metal Finishing, 2000. V. 98. P. 8–18, 2000.
- 6. *Ofoegbu S.U., Fernandes F.A.O., Pereira A.B.* The Sealing Step in Aluminum Anodizing : A Focus on Sustainable Strategies for Enhancing both Energy Efficiency and Corrosion Resistance // Coatings. 2020. V. 10. P. 226.
- Chahboun N., Rocca E., Veys-Renaux D., Augros M., Boutoba M., Caldeira N. Sealing of Anodized Multiphase Aluminum Alloys with Cr(+III)/Zr(+IV) Salts: Characterization and Corrosion Behavior // J. Electrochem. Soc. 2016. V. 163. № 3. P. C69–C75.
- 8. Yu X., Cao C. Electrochemical study of the corrosion behavior of Ce sealing of anodized 2024 aluminum alloy // Thin Solid Films. 2003. V. 423. P. 252–256.
- Osipenko M.A., Kharitonov D.S., Makarova I.V., Wrzesińska A., Kurilo I.I. // Prot. Met. Phys. Chem. Surf. 2020. V. 56. P. 990-997.
- 10. *Kharitonov D.S. et al.* Corrosion Inhibition of Aluminum Alloy AA6063-T5 by Vanadates : Microstructure Characterization and Corrosion Analysis // J. Electrochemical Society, 2018. V. 165. № 3. P. 116–126.

÷...

- Kharitonov D.S. et al. Surface and corrosion properties of AA6063-T5 aluminum alloy in molybdate-containing sodium chloride solutions // Corros. Sci. 2020. V. 171. P. 108658.
- Kharitonov D.S. et al. // Prot. Met. Phys. Chem. Surf. 2020. V. 56. P. 113–124.
- Liu W., Zuo Y., Chen S., Zhao X., Zhao J. The effects of sealing on cracking tendency of anodic fi lms on 2024 aluminum alloy after heating up to 300°C // Surf. Coat. Technol., 2009. V. 203. № 9. P. 1244–1251.
- Balaraju J.N., Srinivasan A., Yoganandan G., Grips V.K.W., Rajam K.S. Effect of Mn/Mo incorporated oxide layer on the corrosion behavior of AA 2024 alloy // Corros. Sci. 2011. V. 53. № 12. P. 4084–4092.
- Runge J.M. Anodizing as an Industrial Process. In: The Metallurgy of Anodizing Aluminum. 2018. Springer, Cham. https://doi.org/10.1007/978-3-319-72177-4 3.
- Donahue C.J., Exline J.A. Anodizing and Coloring Aluminum Alloys // J. Chem. Educ. 2014. V. 91. P. 711– 715.
- 17. Chang J., Lin C., Liao C., Chen C. Effect of Heat-Treatment on Characteristics of Anodized Aluminum Oxide Formed in Ammonium Adipate Solution // J. Electrochemical Society. 2004. V. 151. P. B188.
- Amin M.A., Ei-rehim S.S.A., El-sherbini E.E.F., Hazzazi O.A., Abbas M.N. Polyacrylic acid as a corrosion inhibitor for aluminium in weakly alkaline solutions. Part I : Weight loss, polarization, impedance EFM and EDX studies // Corros. Sci. 2009. V. 51. № 3. P. 658– 667.