РОЛЬ МОНООКСИГЕНАЗНЫХ ФЕРМЕНТНЫХ СИСТЕМ БАКТЕРИЙ В БИОТРАНСФОРМАЦИИ И БИОДЕГРАДАЦИИ КСЕНОБИОТИКОВ

В. Н. Леонтьев, Т. И. Ахрамович, И. М. Бурак, О. С. Игнатовец

Белорусский государственный технологический университет, г. Минск, Беларусь, leontiev@bstu.unibel.by

Различные углеводороды и их производные, являющиеся одним из наиболее распространенных классов ксенобиотиков, могут быть подвержены либо полной биодеградации, либо биотрансформации в ценные кимические вещества. Клетки бактерий родов *Pseudomonas, Rhodococcus, Xanthobacter, Acinetobacter, Bacillus,* способные окислять алифатичесие, алициклические и ароматические углеводороды, содержат монооксигеназные ферментные системы с цитохромом Р-450 в качестве терминальной оксидазы [1]. Причем, очевидно, что роль монооксигеназных цитохром Р-450-содержащих ферментных систем бактерий в биотрансформации и биодеградации ксенобиотиков различна и не до конца выяснена.

Функционирование цитохром P-450-содержащей монооксигеназной ферментной системы требует участия оксидоредуктаз $HAД\Phi H \cdot H^+$ и $HAДH \cdot H^+$ -зависимых электронтранспортных цепей, цитохромов b_5 и P-450.

Аэробные процессы биотрансформации углеводородов осуществляются главным образом через стадии их окисления до эпоксидов, спиртов, диолов. Монооксигеназная ферментная система микроорганизмов используется в этом случае в качестве катализатора стереоселективных превращений углеводородов в ценные химические продукты.

Механизмы биодеградации алифатических, ароматических углеводородов и их производных также достаточно хорошо изучены.

В настоящей работе мы попытались выявить отличительные особенности функционирования монооксигеназных ферментных систем бактерий, осуществляющих трансформационные и деградационные процессы.

В качестве биотрансформационных были выбраны процессы эпоксидирования алкенов бактериями рода *Pseudomonas*. Стереохимия образовавшихся эпоксидов описана в работе [2]. В качестве ростовых субстратов использовали глюкозу, гексан или нонан, а в качестве трансформационных — гексен-1 и нонен-4. В клетках бактерий P. aeruginosa PAOI и P. fluorescens B-22, выращенных на различных субстратах до середины экспоненциальной фазы роста, определяли содержание цитохромов b_5 и P-450, а также активности оксидоредуктаз (табл. 1 и 2 соответственно).

В качестве субстратов деградации были выбраны ароматические углеводороды — бензол, хлорбензол, бромбензол, 4-бромфенол, а также пестициды триазинового ряда — симазин и прометрин. За биодеградацией бензола и его производных следили с помощью метода ГЖХ, а за биодеградацией пестицидов — с помощью метода ВЭЖХ [3].

Результаты измерения содержания цитохромов b_5 и P-450 в клетках бактерий родов *Pseudomonas* и *Rhodococcus*, осуществляющих деградацию бензола, его галогенпроизводных и гетероциклических ксенобиотиков, представлены в табл. 1, а активностей оксидоредуктаз — в табл. 3.

Как видно из представленных данных, замена углеводного субстрата на углеводородные приводит к увеличению содержания цитохромов b_5 и P-450 в клетках бактерий P. aeruginosa PAO1 и P. fluorescens B-22, причем это увеличение особенно заметно у P. fluorescens B-22 при эпоксидировании гексена-1, а у P. aeruginosa PAO1 — при эпоксидировании нонена-4. Кроме этого, в клетках бактерий, осуществляющих деградацию ксенобиотиков, увеличение содержания цитохромов b_5 и P-450 не такое значительное, как при трансформации алкенов в их эпоксипроизводные. Причем при деградации хлорбензола клетками R. opacus B-2243 наблюдается наиболее существенный прирост содержания цитохрома P-450, тогда как для цитохрома b_5 такой эффект отмечается при деградации 4-бромфенола.

Анализ результатов, представленных в табл.2 и 3, показывает, что в клетках $R.opacus\ B-2243$ наблюдается повышенная активность как НАДН-, так и НАДФН-2,6-ДХФИФ-оксидоредуктаз и пониженная активность как НАДН-, так и НАДФН-цитохром с-оксидоредуктаз. Следует также отметить, что значения 2,6-ДХФИФ-редуктазных активностей практически не зависят ни от типа донора электронов, ни от типа субстрата, на котором выращены клетки. Это возможно только в том случас, если электроны на 2,6-ДХФИФ поступают с цитохрома b_5 , что может являться следствием более высокого потенциала НАДН·Н[†]-цитохром b_5 -редуктазы и НАДФН·Н[†]-цитохром p_6 -редуктазы у данного штамма по сравнению с бактериями рода p_6 -редуктазы у данного штамма по сравнению с бактериями рода p_6 -редуктазы у данного штамма по сравнению с бактериями рода p_6 -редуктазы у данного штамма по сравнению с бактериями рода p_6 -редуктазы у данного штамма по сравнению с бактериями рода p_6 -редуктазы у данного штамма по сравнению с бактериями рода p_6 -редуктазы у данного штамма по сравнению с бактериями рода p_6 -редуктазы у данного штамма по сравнению с бактериями рода p_6 -редуктазы у данного штамма по сравнению с бактериями рода p_6 -редуктазы у данного штамма по сравнению с бактериями рода p_6 -редуктазы у данного штамма по сравнению с бактериями рода p_6 -редуктазы у данного штамма по сравнению с бактериями рода p_6 -редуктазы у данного штамма по сравнению с бактериями рода p_6 -редуктазы у данного штамма по сравнению с бактериями рода p_6 -редуктазы у данного штамма по сравнению с бактериями рода p_6 -редуктазы у данного штамма по сравнению с бактериями рода p_6 -редуктазы у данного штамма по сравнению с бактериями рода p_6 -редуктазы у данного штамма по сравнению с бактериями рода p_6 -редуктазы у данного штамма по сравнению с бактериями рода p_6 -редуктазы и набра p_6 -редуктазы у данного штамма по сравнению с бактериями рода p_6 -редуктазы и набра p_6 -редуктазы и набра p_6 -редуктазы и набра p_6 -редуктазы и набра p_6 -редуктазы

Содержание цитохромов b₅ и P-450 в бактериальных клетках в экспоненциальной фазе росга

						T	T	T		T.	T	Г	T
	R. opacus	B-2243	P-450	0.02	. 1	1		0.03	0.04	0.05	0.08	1	
	R. 0,	B-2	þe	0.01			1	0,01	0,02	0.05	0,02	, 1	
белка	antica	B-162	P-450	1	1	1	1	1	1		1	1	0,04
нмоль/мг	P aurantica	B-1	b,			1			1		1	1	0,02
№ Р-450,	P. aeruginosa	-7	P-450	1	1	1		1	1	1	1	0,01	
гохромов в	P. aeru	B-7	bs		1	-	1	1	1		1	0,02	
Содержание цитохромов b ₅ и P-450, нмоль/мг белка	P. fluorescens	B-22	P-450	0,02	0,10	0,21	0,18	-	1			1	1
Соде	P. fluoi	B-	bs	0,04	0,12	0,18	0,05			1	1	1	1
	P. aeruginosa	PAOI	P-450	0,03	0,05	0,02	60,0	1	-	-	_	1	_
	Р. аег	PA	b ₅	0,01	0,02	0,04	90,0	ı	1	ı	_	1	1
	Субстват	of contract		Глюкоза	Гексан	Гексен-1	Нонен-4	Бензол	Бромбензол	4-Бромфенол	Хлорбензол	Прометрин	Симазин

Примечание: представленные значения являются средними из 3-х измерений.

Активности оксидоредуктаз в клетках бактерий, осуществляющих трансформацию алкенов в эпоксиалканы

			Активность о	ксида	оредуктаз, нмоль/мин-мг белка	ин-мг белка		
Поноп/акпептор электронов		P.aerugim	aeruginosa PAO 1			P.fluoresc	cens B-22	
Toronto do company do company	глюкоза	гексан	гексен-1	нонен-4	глюкоза	гексан	гексен-1	нонен-4
ФИФХП-9 С-НПАН	1.71	2.30	2,70	3,51		4,94	7,44	3,77
ФИФХИ-9 С-НФПФИ	2,21	2.94	3,07	1,68	1,65	1,67	2,83	2,09
НА ЛН-питохром с	1.81	1.98	3,15	76,0	1,66	2,78	4,17	0,37
НА ПФН-питохном с	0.52	0.39	1,43	0,40	0,51	98'0	0,84	0,43
UA TH: K.F. (CN)	21 47	06.62	83.24	35,48	50,26	60,46	82,48	28,57
HA HAH: K-FP (CN)	14.24	43.07	26,22	20,54	27,78	31,30	56,10	13,76
HATTH: HT	0.35	0.35	90.0	0,11	0,10	0,17	0,14	0,14
НАЛФН: НТ	0.14	0,27	0,21	0,03	0,23	0,21	0,12	0,07

Примечание: то же, что и в табл.1.

2. 2,6-ДХФИФ – 2,6-дихлорфенолиндофенолят натрия; НТ – неотетразолий син.

Таблица 3

Активности оксидоредуктаз в клетках бактерий, осуществляющих деградацию бензола, его галогенпроизводных и гетероциклических ксенобиотиков

			Акти	Активность оксидоредуктаз, нмоль/мин·мг белка	дуктаз, нмоль	/мин·мг белка	
Донор/акцептор		100000	R. opacus B-2243	8-2243		P. aeruginosa B-7	P. aeruginosa B-7 P. aurantica B-162
электронов	глюкоза	бензол	бромбензол	бромбензол 4-бром-фенол	хлорбензол	прометрин	симазин
НА ЛН-2 6-ПХФИФ	1		68.9	-	8,48	3,76	3,32
НАПФИСТЕРИИ		7.75	6,14		8,80	2,45	0,54
НА ЛН-питохром с	-	0.89	0,47	1	0,59	3,69	3,35
НА ПФН-питохром с		0.16	0.32		0,22	1,92	1,28
HA TH. K.Fe (CN)	1	64.15	148.3	1	78,86	39,52	36,87
HA TOH: K3Fe (CN)		39.01	45,34		18,73	22,41	16,04
HAMH: HT	1	0.41	0,20	1	0,46	0,32	0,37
НАДФН: НТ		1,65	0,58		2,39	0,27	80,0

DESONORMENT TO RE, TTO R 9 TAGS 2

В клетках бактерий рода *Pseudomonas* независимо от того, осуществляют ли они трансформацию или деградацию, наблюдаются в значительной степени близкие значения активностей оксидоредуктаз. Причем, отмечаются случаи более существенных изменений активностей оксидоредуктаз в пределах одного штамма, выращенного на разных субстратах, папример, для *P. fluorescens B-22* НАДФН:К₃Fe (CN)₆-редуктазная активность при переходе от гексена-1 к нонену-4 уменьшается примерно в 4 раза.

- 1. Munro A.W., Lindsay Y.C. // Mol. Microbiol. 1996. V. 20, № 6. P. 1115-1125.
- 2. Besse P., Sokoltchik T., Veschambre H. Chemoenzymatic synthesis of α -halogeno-3-octanol and 4-or 5-nonanols. Application to the preparation of chiral epoxydes // Tetrahedron: Asymmetry. 1998. V. 9. P. 4441–4457.
- 3. Бурак И.М., Леонтьев В.Н., Ахрамович Т.И., Гриц Н.В. Биодеградация симмтриазиновых пестицидов // Труды БГТУ. Вып. 8. 2000. С. 223–228.
- 4. Сокольчик Т.И., Леонтьев В.Н., Гриц Н.В. Зависимость активностей оксидоредуктаз и содержания цитохромов b₅ и P-450 у бактерий рода *Pseudomonas* от структуры шестиуглеродного субстрата // Микробиол. 1999. Т. 68, № 3. С. 299–303.

ВЛИЯНИЕ ГЛИФОСАТА НА СОДЕРЖАНИЕ ФЕНИЛОПРОПЕНОИДОВ В РАСТЕНИЯХ МОРКОВИ

 $E. \, M. \, Лис, \, И. \, Ясицка-Мисяк^1, \, П. \, Вечёрек^1$

Белорусский государственный университет, г. Минск, Беларусь [1] Институт химии, Опольский университет, г. Ополе, Польша lisa@list.ru

В настоящее время в сельском хозяйстве используется ряд гербицидов, которые ингибируют синтез ароматических аминокислот – исходных продуктов для синтеза разпообразных групп органических соединений. Одним из таких гербицидов является глифосат, подавляющий действие ключевого фермента синтеза шикимовой кислоты, в ходе которого
образуются фенилаланин, тирозин и триптофан. В дальнейшем из ароматических аминокислот образуются фенилопропеноиды, которые, в частпости, защищают растение от негативного влияния таких внешних факгоров, как гербициды, УФ излучение, микроорганизмы.