Данные напитки были представлены на центральную дегустационную комиссию по пивобезалкогольной отрасли, получили высокую органолептическую оценку и рекомендованы к внедрению. На новые функциональные безалкогольные напитки разработаны рецептуры [2-4].

Литература

1. Зуев Е.Т. Функциональные напитки: их место в концепции здорового питания // Пищевая промышленность. -2004. - N 2. - C. 90-95.

2. Напиток безалкогольный газированный «ІМПЭТ – ТАНІЗУЮЧЫ». РЦ РБ 190235-

01.4.407-2006.

- 3. Напиток безалкогольный газированный «ІМПЭТ ЭНЕРГЕТЫЧНЫ» РЦ РБ 190235-01.4.408-2006.
- 4. Напиток безалкогольный газированный «ІМПЭТ СПАРТЫУНЫ» РЦ РБ 190235-01.4.409-2006.

УДК 663.533

ИСПОЛЬЗОВАНИЕ АКТИВНЫХ СУХИХ ДРОЖЖЕЙ В ПРОИЗВОДСТВЕ ПЛОДОВЫХ ВИН

Т.М. Тананайко, кандидат технических наук, доцент, К.А. Алексанян, Л.А. Ткачук РУП «Научно-практический центр НАН Беларуси по продовольствию», Минск, Беларусь

В современных условиях одним из приоритетных направлений научно-исследовательской деятельности Научно-практического центра НАН Беларуси по продовольствию является разработка технологических приемов, направленных на создание безопасной продукции и устранение отрицательного воздействия некоторых факторов технологического процесса в производстве плодовых вин.

Основной группой риска при отравлениях алкогольсодержащими продуктами являются вещества, сопровождающие спиртовое брожение, — метанол (метиловый спирт), сивушные масла, ацетальдегид, сложные эфиры и др. Как показывают результаты многолетних исследований ведуших ученых-виноделов разных стран, наибольшую угрозу из них представляет метиловый спирт.

В последние годы в винодельческой отрасли применяются активные сухие дрожжи (АСД), которые вытеснили традиционно используемые в отрасли расы чистых культур винных дрожжей (ЧКД). С точки зрения ведения технологического процесса применение АСД имеет ряд неоспоримых преимуществ по сравнению с ЧКД:

- простота приготовления растворов АСД;

- улучшение санитарно-гигиенического состояния производства;
- сокращение продолжительности брожения и трудозатрат;
- возможность получения в более короткие сроки необходимого количества дрожжевой биомассы;
- возможность проведения процесса чистого брожения;
- обеспечение стабильных органолептических показателей конечного продукта.

Между тем у многих виноделов бытует мнение, что использование активных сухих дрожжей ухудшает качественные показатели вин.

Целью настоящих исследований является изучение механизма образования вторичных продуктов спиртового брожения, сравнительная оценка содержания вредных и полезных микропримесей при производстве яблочных виноматериалов с использованием различных видов активных сухих дрожжей и расы чистых культур дрожжей «Яблочная 7».

Приготовление образцов яблочного виноматериала (сброженного сока) осуществляли в три этапа: подготовка сусла, реактивация АСД и приготовление разводки ЧКД, проведение спиртового брожения.

В экспериментах были использованы активные сухие дрожжи LALVIN V 1116 и SIHA-Aktiv-Hefe 8 и наиболее распространенная раса чистых культур дрожжей «Яблочная 7».

Для определения вторичных продуктов брожения было приготовлено 12 лабораторных образцов яблочных виноматериалов с естественным набродом спирта 5 и 10 %. Информация о приготовленных образцах яблочных сброженных соков с указанием технологических параметров проведения брожения яблочного сусла приведена в табл. 1.

В качестве сусла для брожения использовали неосветленный натуральный яблочный сок.

Таблица 1 Технологические параметры проведения брожения яблочного сусла

телионет техние параметры проведения орожения яоло пото сусла												
№ об- раз- ца	Наименование дрожжей	Температура брожения, ^о С	Массовая концентрация сахаров, г/дм ³	Длитель- ность брожения, сутки	Относительная плотность в конце брожения							
1	LALVIN V 1116	25	87,9	5	0,996							
2	SIHA-Aktiv-Hefe 8	25	87,9	5	0,996							
3	Яблочная-7	25	87,9	6	0,996							
4	LALVIN V 1116	10	87,9	26	0,996							
5	SIHA-Aktiv-Hefe 8	10	87,9	35	0,997							
6	Яблочная-7	10	87,9	32	0,997							
7	LALVIN V 1116	25	173,0	9	0,991							
8	SIHA-Aktiv-Hefe 8	25	173,0	8	0,991							
9	Яблочная-7	25	173,0	8	0,991							
10	LALVIN V 1116	10	173,0	41	0,996							
11	SIHA-Aktiv-Hefe 8	10	173,0	45	1,015							
12	Яблочная-7	10	173,0	39	0,997							

Для обеспечения объемной доли этилового спирта естественного наброда в сброженном соке (не менее 5,0 и 10 %) сахаристость сусла повышали путем добавления сахара до массовой концентрации 87,9 и 173,0 г/дм³ соответственно (относительная плотность D = 1,045 и 1,078). Для питания дрожжей перед брожением в сусло задавали хлористый аммоний из расчета 0,25 г/дм³.

Реактивацию АСД проводили в теплой воде с температурой 35 °C при гидромодуле 1:10, оставляли на 20-30 минут, затем перемешивали для равномерного распределения клеток по всему объему суспензии. Количество вносимых в яблочное сусло дрожжей составило 0,2 г/дм³ сусла при проведении брожения при температуре 25 °C и 0,3 г/дм³ – при температуре 10 °C.

Разводку ЧКД готовили по схеме, принятой в винодельческой отрасли.

Брожение яблочного сусла с использованием АСД и ЧКД проводили в термостате при температуре 25° и 10° С. В ходе процесса брожения контролировали динамику изменения относительной плотности (D) сусла.

Массовую концентрацию титруемых кислот, летучих кислот и инвертного сахара определяли по ГОСТ 14252-73, ГОСТ 13193-73 и ГОСТ 13192-73 соответственно. Исследование энологических характеристик дрожжей включало определение в сброженном субстрате: объемной доли этанола и метанола, массовой концентрации высших спиртов, ацетальдегида, этилацетата, глицерина.

Концентрацию глицерина определяли методом ферментативного анализа, основанного на превращениях глицерина.

Определение содержания высших спиртов, ацетальдегида, этилацетата, метанола в образцах сброженных соков выполняли на газовом хроматографе Ц 500М с пламенно-ионизационным детектором. Использовали капиллярную колонку длиной 60 м и внутренним диаметром 0,53 мм типа DB-FFAP. Анализ проводили при программировании температуры от 50 до 65 °C со скоростью 5 °C/мин и от 65 до 200 °C со скоростью 25 °C/мин. Температура испарителя – 200 °C, детектора – 250 °C. В качестве газа-носителя использовали гелий. Количественные расчеты проводили с использованием стационарных растворов микропримесей в водках. Результаты проведенных исследований приведены в табл. 2.

Физико-химические показатели сброженных яблочных соков

	Массовая концентрация, г/дм ³												
Наиме- нование образца	Инве- ртный сахар	Тит- руемые кисло- ты	Лету- чие кисло- ты	Выс- шие спирты	Ацет- альде- гид	Этил-	Глице- рин	Эта- нол, % об.	Мета- нол, % об.	pН			
При массовой концентрации сахаров в начальном сусле 87,9 г/дм ³													
Образец № 1	1,4	8,4	0,20	208,8	82,0	9,2	3,3	5,5	0,0055	3,39			
Образец № 2	1,2	8,1	0,13	332,7	127,3	6,7	3,6	5,4	0,0039	3,45			
Образец № 3	1,1	7,7	0,23	194,6	113,9	9,4	2,9	5,6	0,0037	3,42			
Образец № 4	1,2	8,2	0,24	88,5	55,1	3,6	5,2	5,6	0,0020	3,41			
Образец № 5	2,3	8,0	0,15	116,3	28,6	3,6	5,4	5,7	0,0023	3,46			
Образец № 6	1,3	7,5	0,26	91,3	27,6	3,0	3,3	5,8	0,0015	3,38			
При массо	вой кон	центраци	и сахар	ов в нача	альном с	усле 173	3,0 г/дм ³						
Образец № 7	2,0	8,3	0,17	389,7	106,9	12,0	7,8	10,7	0,0043	3,45			
Образец № 8	1,9	8,0	0,16	467,4	123,2	10,6	7,6	9,5	0,0034	3,52			
Образец № 9	2,3	7,6	0,29	263,0	106,2	11,6	5,6	9,3	0,0031	3,45			
Образец № 10	7,7	8,1	0,53	174,2	76,2	6,6	6,7	9,0	0,0022	3,48			
Образец № 11	6,5	7,9	0,62	257,1	102,7	3,0	6,2	8,6	0,0045	3,58			
Образец № 12	2,3	7,4	0,33	148,0	20,2	3,8	4,9	8,9	0,0025	3,45			

Анализ полученных результатов позволяет сделать вывод, что содержание в яблочном виноматериале вторичных продуктов брожения – ацетальдегида, этилацетата, высших спиртов – зависит от природы использованных дрожжей и условий проведения процесса брожения. Понижение температуры брожения до $10\,^{\circ}$ С, независимо от используемых дрожжей, приводит к уменьшению образования высших спиртов, ацетальдегида, этилацетата и метанола (исключение составляет образец № 11, в котором образовался недоброд).

При прочих одинаковых условиях при использовании активных сухих дрожжей содержание вышеназванных микропримесей ниже, чем при использовании расы чистой культуры, что является несомненным преимуществом АСД.

Динамика накопления глицерина в соке с более низкой массовой концентраций сахаров (образцы N_2/N_2 1-6), содержание которого во многом влияет на формирование вина, свидетельствует о прямой зависимости содержания глицерина и температуры брожения.

При высокой концентрации сахаров в начальном сусле при температуре брожения 10 °С (образцы №/№ 10-12) резко снижается содержание глицерина, что косвенно свидетельствует об изменении направления образования вторичных продуктов брожения. Очевидно, именно данный фактор является причиной образования недобродов в указанных образцах.

Комплексное изучение и систематизация полученных результатов позволяют сделать следующие выводы.

Образование вторичных продуктов брожения, следовательно, их безопасность во многом зависит от параметров ведения технологического процесса брожения, в том числе от подбора вида винных дрожжей.

Активные сухие дрожжи, адаптированные к плодово-ягодному сырью, имеют ряд преимуществ по сравнению с расами чистых культур дрожжей и могут успешно применяться в отрасли после проведения необходимых научно-исследовательских работ, направленных на изучение и подбор оптимальных технологических параметров брожения.

При использовании активных сухих дрожжей в плодовом виноделии необходимо предварительно проводить их адаптацию к плодовому сырью для выработки дифференцированного подхода к их подбору.

Для получения безопасных для потребителя высокоэкстрактивных плодовых вин целе-

сообразно проводить регулируемое по температуре брожение.

Результаты исследований динамики образования микропримесей в производстве плодовых вин легли в основу экспериментальных работ в промышленных условиях, которые в дальнейшем были проведены на винодельческих предприятиях республики.

Литература

- 1. Литовченко А.М., Тюрин С.Т. Технология плодово-ягодных вин. Симферополь. Таврида, 2004.
- 2. Раппопорт А.И., Медведева Г.А. Цитологическое исследование устойчивости к лиофилизации дрожжей. Рига: Зинатне, 1976.
- 3. Стаценко Л.А. Активные сухие дрожжи института энологии в Шампани // Виноделие и виноградарство. 2003. № 4.
- 4. Мартыненко Н.Н. История создания активных сухих дрожжей // Виноделие и виноградарство. 2004. № 1.

ДК 663.86.2

ИЗУЧЕНИЕ ЭФФЕКТИВНОСТИ ИСПОЛЬЗОВАНИЯ ФЕРМЕНТНЫХ ПРЕПАРАТОВ АМИЛОЛЮКС-А, ГЛЮКОЛЮКС-А В ПРОИЗВОДСТВЕ ЭТИЛОВОГО СПИРТА ИЗ ПИЩЕВОГО СЫРЬЯ

Т.М. Тананайко, кандидат технических наук, доцент, И.К. Шрамякова, Л.Г. Сергеенко, Д.В. Хлиманков, А.А. Пушкарь РУП «Научно-практический центр НАН Беларуси по продовольствию», Минск, Беларусь

Широкое применение ферментных препаратов микробного происхождения для полной замены солода в производстве этилового спирта из пищевого сырья за счет более глубокого гидролиза позволяет значительно повысить эффективность использования сырья и стабилизировать технологические процессы.

Применение ферментных препаратов способствует внедрению более совершенных энерго- и ресурсосберегающих технологий, позволяющих значительно экономить тепловую энергию и создавать условия безопасной эксплуатации оборудования [1].

Ферментные препараты представляют собой высокоэффективные катализаторы, полученные микробным синтезом с помощью бактериальных или грибных культур. В производстве спирта ферментные препараты обеспечивают расщепление крахмала и некрахмалистых полисахаридов до углеводов, сбраживаемых дрожжами на этиловый спирт.

В настоящее время в спиртовой промышленности Республики Беларусь наиболее распространенным видом крахмалосодержащего сырья является рожь, которая относится к трудно сбраживаемому сырью из-за сложного белково-углеводного комплекса и высокого содержания некрахмалистых полисахаридов.