## С. К. Протасов, доцент; А. А. Боровик, доцент; М. Г. Скотников, студент

## РАЗРАБОТКА И ИССЛЕДОВАНИЕ ПЛАСТИНЧАТОГО КАПЛЕОТБОЙНИКА

In the article the results of experimental researches of hydraulic resistance plate separator are submitted. Carry-over of liquid in the effluent gas stream between two plates is studied. The influence of regime and geometrical parameters on losses of pressure is shown. Calculation dependences of carry-over of liquid in the effluent gas stream and hydraulic resistance are received. Diapasons of stable work are determined.

При взаимодействии газа с жидкостью в массообменных аппаратах образуются капли, которые уносятся газовым потоком из зоны контакта фаз, а затем из аппарата. Унос капель существенно снижает эффективность массообмена, а при взаимодействии ценных продуктов увеличивает их потери.

С целью устранения брызгоуноса используют каплеотбойники, брызгоуловители, циклоны и другие конструкции.

В БГТУ на кафедре ПиАХП ранее была разработана и исследована конструкция каплеотбойника, выполненного из уголков, расположенных в виде «лесенки» [1]. Каплеотбойник обладает низким гидравлическим сопротивлением и высокой степенью улавливания капель, однако при увеличении диаметра аппарата его высота тоже увеличивается.

Для упрощения конструкции каплеотбойника и уменьшения его высоты разработан пластинчатый отбойник, выполненный в виде «двухскатной крыши», высота которого не зависит от диаметра аппарата.

Исследования работоспособности каплеотбойника проводили в колонне с ситчатой тарелкой. Методика и условия проведения исследований описаны в работе [2], где приведены данные по его гидравлическому сопротивлению. В данной статье представлены подробные исследования брызгоуноса.

Количество уносимых потоком воздуха капель воды после каплеотбойника определяли объемным каплеуловителем. Каплеотбойник располагали на высоте  $h_0=0,10\,\mathrm{m}$  и  $h_0=0,05\,\mathrm{m}$  от полотна тарелки. При этом определяли величину абсолютного e (кг/с) и относительного уноса u (кг/кг газа) в зависимости от скорости  $w_{\mathrm{K}}$  (м/с) воздуха в колонне и количества подаваемой воды на ситчатую тарелку, выраженного в виде плотности орошения q, м³/(м · ч).

Для устранения проскока части воздуха под нижней пластиной отбойника вдоль переливной планки устанавливали вертикальную пластину.

Опытные данные представлены на рис. 1 и 2 в виде графических зависимостей абсолютного и относительного уноса жидкости от ско-рости движения газа в колонне и от плотности орошения в логарифмических координатах.

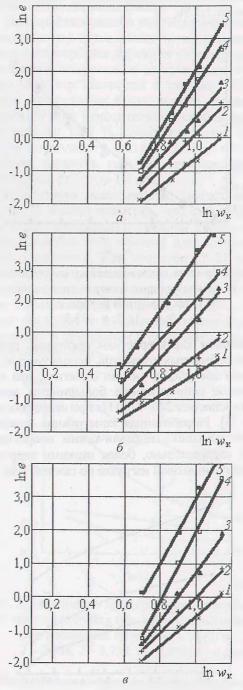



Рис. 1. Зависимость абсолютно уноса e от скорости газа  $w_{\kappa}$  в колонне при плотностях орошения q,  $M^3/(M \cdot q)$ : I-1; 2-3; 3-5; 4-7; 5-9; а также при  $h_0$ , м: a-0,10; 6-0,05 (без установки вертикальной пластины); g-0,05 (с установкой вертикальной пластины)

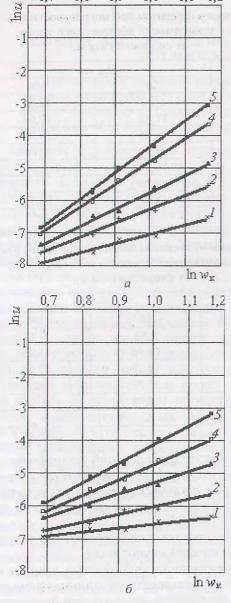



Рис. 2. Зависимость относительного уноса u от скорости газа  $w_{\kappa}$  в колонне при плотностях орошения q,  $m^3/(m \cdot q)$ : l-1; 2-3; 3-5; 4-7; 5-9; а также при  $h_0$ , м: a-0,10; 6-0,05 (с установкой вертикальной пластины)

На рис. 1 и 2 видно, что полученные экспериментальные зависимости величины абсолютного и относительного уноса от скорости газа  $w_{\rm k}$  в колонне в пределах от 2 до 3,2 м/с при различных плотностях орошения q и  $h_0$ , с установкой вертикальной пластины и без нее, линеаризуются в логарифмических координатах.

Для абсолютного уноса линейная зависимость имеет следующий вид:

$$lne = lnA + nlnw_{\kappa}. \tag{1}$$

В координатах  $e = f(w_{\kappa})$  эта зависимость приобретает степенную форму:

$$e = Aw_{\kappa}^{n}, \tag{2}$$

где показатель степени n равен тангенсу угла наклона прямой, а  $\ln A$  — отрезку, отсекаемому на оси ординат.

Полученные значения показателя степени n и коэффициента A приведены в табл. 1.

Таблица 1 Значения показателя степени n и коэффициента A

|                       |                | $h_0$ , | мм             |       |
|-----------------------|----------------|---------|----------------|-------|
| q,                    | 50             |         | 100            |       |
| м <sup>3</sup> /(м·ч) | $A \cdot 10^3$ | n       | $A \cdot 10^3$ | n     |
| 1                     | 6,468          | 4,438   | 1,389          | 5,732 |
| 3                     | 0,5097         | 7,471   | 0,5043         | 7,466 |
| 5                     | 0,0232         | 11,08   | 0,5817         | 7,881 |
| 7                     | 0,0195         | 12,534  | 1,388          | 7,913 |
| 9                     | 0,5394         | 10,253  | 0,7193         | 9,11  |

Зависимость абсолютного уноса e от плотности орошения q, изменяющейся в пределах  $1-9 \text{ м}^3/(\text{м}\cdot\text{ч})$ , также можно записать:

$$e = A_1 q^{n1}. (3)$$

Полученные значения показателя степени n1 и коэффициента  $A_1$  приведены в табл. 2.

Таблица 2 Значения показателя степени n1 и коэффициента  $A_1$ 

| 141            | <i>h</i> <sub>0</sub> , мм |       |                |       |  |
|----------------|----------------------------|-------|----------------|-------|--|
| $w_{\kappa}$ , | 50                         |       | 100            |       |  |
| M/C            | $A_{\perp}$                | nl    | A <sub>1</sub> | n1    |  |
| 2,0            | 0,001 545                  | 2,999 | 0,138          | 0,498 |  |
| 2,4            | 0,000 131 1                | 4,902 | 0,13           | 1,247 |  |
| 2,6            | 0,004 676                  | 3,47  | 0,04           | 2,163 |  |
| 2,8            | 0,023                      | 3,014 | 0,129          | 1,923 |  |
| 3,2            | 0,101                      | 3,05  | 0,072          | 2,721 |  |

Для относительного уноса u запишем в тех же пределах зависимость от скорости газа:

$$u = A_2 w_{\kappa}^{n2}. \tag{4}$$

Полученные значения показателя степени n2 и коэффициента  $A_2$  сведены в табл. 3.

Таблица 3 Значения показателя степени n2 и коэффициента  $A_2$ 

|                         | <i>h</i> <sub>0</sub> , мм |       |                  |       |  |
|-------------------------|----------------------------|-------|------------------|-------|--|
| $q$ , $M^3/(M \cdot 4)$ | 50                         |       | 100              |       |  |
| W / (W 4)               | $A_2 \cdot 10^6$           | n2    | $A_2 \cdot 10^6$ | n2    |  |
| 1                       | 34,69                      | 3,373 | 28,42            | 3,496 |  |
| 3                       | 3,283                      | 6,247 | 5,461            | 5,793 |  |
| 5                       | 0,1463                     | 9,875 | 4,025            | 6,594 |  |
| 7                       | 3,567                      | 8,337 | 22,16            | 5,935 |  |
| 9                       | 3,448                      | 9,028 | 3,664            | 8,094 |  |

Запишем зависимость относительного уноса u от плотности орошения q:

$$u = A_3 q^{n3}. (5)$$

Полученные значения показателя степени n3 и коэффициента  $A_3$  сведены в табл. 4.

Таблица 4 Значения показателя степени n3 и коэффициента  $A_3$ 

|                 | h <sub>0</sub> , MM |       |                  |       |
|-----------------|---------------------|-------|------------------|-------|
| W <sub>K1</sub> | 5                   | 50    |                  | 00    |
| м/с             | $A_3 \cdot 10^6$    | n3    | $A_3 \cdot 10^4$ | пЗ    |
| 2,0             | 2,723               | 3,169 | 3,366            | 0,509 |
| 2,4             | 0,2006              | 5,048 | 2,695            | 1,249 |
| 2,6             | 8,986               | 3,47  | 9,348            | 2,071 |
| 2,8             | 5,101               | 4,025 | 2,296            | 1,923 |
| 3,2             | 158,3               | 3,05  | 1,128            | 2,721 |

Все функциональные зависимости были обработаны на ЭВМ. О тесноте линейной связи можно судить по величине коэффициента корреляции R, значения которого сведены в табл. 5 и 6.

Таблица 5 Значения коэффициента корреляции R для зависимости абсолютного уноса e от скорости газа  $w_{\kappa}$ 

| q,                | h <sub>0</sub> , MM |        |
|-------------------|---------------------|--------|
| $M^3/(M \cdot 4)$ | 50                  | 100    |
| 1                 | 0,9909              | 0,9943 |
| 3                 | 0,9471              | 0,9711 |
| 5                 | 0,9322              | 0,9638 |
| 7                 | 0,9863              | 0,9871 |
| 9                 | 0,9956              | 0,9995 |

Таблица 6 Значения коэффициента корреляции *R* 

Значения коэффициента корреляции R для зависимости относительного уноса u от скорости газа  $w_{\kappa}$ 

| q,         | <i>h</i> <sub>0</sub> , мм |        |
|------------|----------------------------|--------|
| м3/(м · ч) | 50                         | 100    |
| 1          | 0,9844                     | 0,99   |
| 3          | 0,9218                     | 0,9571 |
| 5          | 0,9097                     | 0,9483 |
| 7          | 0,9834                     | 0,9833 |
| 9          | 0,9944                     | 0,999  |

Кроме того, были вычислены относительные погрешности  $\varepsilon$  (%), значения которых сведены в табл. 7 и 8.

Значения относительной погрешности  $\epsilon$  (%) для зависимости абсолютного уноса от скорости газа  $w_{\kappa}$ 

| q,                    | $h_0$ ,                          | MM    |
|-----------------------|----------------------------------|-------|
| м <sup>3</sup> /(м·ч) | 50                               | 100   |
| 1                     | 6,20                             | 12,80 |
| 3                     | 11,33                            | 12,06 |
| 5                     | 16,95                            | 15,95 |
| 7                     | 15,19                            | 8,15  |
| 9                     | 16,77                            | 3,68  |
|                       | $\Delta \varepsilon_{\rm cp},$ % |       |
|                       | 13,29                            | 10,52 |

Таблица 8 Значения относительной погрешности  $\varepsilon$  (%) для зависимости относительного уноса u от скорости газа  $w_{\kappa}$ 

| q,       | $h_0$ ,                           | ММ    |
|----------|-----------------------------------|-------|
| M3/(M·4) | 50                                | 100   |
| 1        | 5,53                              | 5,34  |
| 3        | 19,46                             | 15,86 |
| 5        | 14,38                             | 13,75 |
| 7        | 16,28                             | 16,5  |
| 9        | 16,38                             | 3,25  |
|          | $\Delta \varepsilon_{\rm cn}$ , % |       |
| _        | 14,40                             | 10,94 |

В результате исследований установлено:

- относительный унос каплеотбойников типа «лесенка» и «двухскатная крыша» практически одинаков до скорости газа 2,4 м/с и не превышает  $3 \cdot 10^{-3}$  кг/кг;
- при скоростях газа более 2,4 м/с у каплеотбойника «лесенка» унос ниже;
- каплеотбойник «двухскатная крыша» необходимо устанавливать на минимальном расстоянии от полотна тарелки при плотностях орошения менее 5 м $^3$ /(м $\cdot$ ч) и на максимальном при плотностях орошения более 5 м $^3$ /(м $\cdot$ ч).

## Литература

- 1. Протасов, С. К. Разработка и исследование новой конструкции массообменной тарелки / С. К. Протасов, А. А. Боровик, О. Л. Сороко // Перспективы производства продуктов питания нового поколения: материалы междунар. науч.-практ. конф., 6-7 окт. 2005 г. Минск, 2005. С. 133–135.
- 2. Протасов, С. К. Исследование гидродинамических параметров ситчатой тарелки с пластинчатым отбойником / С. К. Протасов, А. А. Боровик, М. Г. Скотников // Труды БГТУ. Сер. III, Химия и технология неорган. в-в. — Минск, 2006. — Вып. XIV. — С. 109—111.