УДК 621.785.36+537.31

С.В. Курган, мл. науч. сотрудник; Г.С. Петров, доцент; Л.А. Башкиров, профессор; А.И. Клындюк, ст. преподаватель

ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА ТВЕРДЫХ РАСТВОРОВ LA1-XNDXCOO3

Synthesis of solid solutions $La_{1-x}Nd_xCoO_3$ (x = 0; 0.1; 0.25; 0.5; 0.75; 0.9; 1.0) was conducted. Crystal lattice parameters were calculated on the basis of X-ray data. D.c. electrical conductivity measurements of the sintered polycrystalline tablets were carried out in air in the 300–1100 K temperature range by four–probe method. Thermal expansion of the samples was also measured in air at 300–1100 K temperature interval by means of a quartz dilatometer. For all the cobaltites studied on temperature dependence of electrical conductivity and thermal expansion anomalies are observed which are connected with the semiconductor – metal phase transition, at which considerable electrical conductivity changes as well as changes of coefficient of thermal expansion take place.

Открытые еще в 50-х гг. 20 века кобальтиты РЗЭ LnCoO₃ со структурой перовскита и в настоящее время продолжают интенсивно исследоваться. Эти соединения обладают комплексом интересных электрических [1-4], магнитных [5-7], каталитических [8] и других свойств. Повышенный интерес к кобальтитам связан как с научной значимостью получаемых результатов, так и с практическим использованием их в качестве резисторов, электродных материалов для гальванических элементов с твердым электролитом [9, 10], а также изготовления керамических мембран для получения чистого кислорода из воздуха. Есть основания предполагать, что кобальтиты лантана и редкоземельных элементов могут образовывать непрерывный ряд твердых растворов Ln_{1-x}'Ln_x''CoO₃, где Ln', Ln'' – La и редкоземельные элементы. Однако в литературе отсутствуют сведения по систематическому исследованию двойных и тройных твердых растворов кобальтитов этих элементов, что сужает возможные области их применения. Известна единственная работа, в которой получены твердые растворы La_{1-x}Ln'_xCoO₃ (Ln'=Sm, Ho), Sm_{1-x}Ln''_xCoO₃ (Ln''=Er, Yb) и определены параметры их кристаллической решетки [11].

Целью настоящей работы является определение параметров кристаллической решетки, исследование электропроводности и термического расширения твердых растворов кобальтитов La_{1-x}Nd_xCoO₃ (x = 0.00; 0.10; 0.25; 0.50; 0.75; 0.90; 1.00) в интервале температур 300–1100 К.

Методики синтеза и исследования образцов аналогичны описанным в работе [12].

Согласно результатам рентгенофазового анализа, все синтезированные образцы были однофазными. Параметры кристаллической структуры образцов определяли при помощи программы FullProf методом Ритвельда. Из полученных рентгеновских дифрактограмм видно, что кобальтиты LaCoO₃, NdCoO₃ имеют соответственно ромбоэдрически и орторомбически искаженную структуру перовскита. Это хоропю согласуется с литературными данными для LaCoO₃ [2, 4, 6, 9, 10, 11] и частично NdCoO₃, для которого есть сведения, что он имеет, по данным работ [13–15], орторомбически, по данным работы [16] – тетрагонально искаженную структуру перовскита, а по данным работы [8] – кубическую структуру. Полученные нами твердые растворы La_{1-x}Nd_xCoO₃ при x = 0.10 имеют ромбоэдрическую структуру, при x = 0.75; 0.90 – орторомбическим искажением перовскита. При этом степень ромбоэдрического искажения кристаллической решетки постепенно уменьшается по мере увеличения содержания неодима. В табл. 1 показано, как рассчитанные значения параметров a_R , α_R , объема V_R ромбоэдрический фазы, a_0 , b_0 , c_0 , V_0 и степени орторомбического искажения $\varepsilon = (b-a)/a$ орторомбически искаженной структуры перовскита исследованных твердых растворов

La_{1-x}Nd_xCoO₃ изменяются в зависимости от содержания в них неодима, т. е. от величины х. Полученные данные показывают, что замещение иона La³⁺ меньшим ионом Nd³⁺ приводит к линейному уменьшению параметров b_0 , c_0 и нелинейному уменьшению параметра a_0 орторомбически искаженной кристаллической решетки, уменьшению объема элементарной ячейки орторомбически искаженных V_0 и ромбоэдрически искаженных V_R исследованных твердых растворов (табл. 1). При этом следует отметить, что рассчитанные параметры a_R , α_R кристаллической структуры LaCoO₃ (табл. 1) хорошо согласуются с данными [4] ($a_R = 0.5373$ нм, $\alpha_R = 60.80^\circ$ нм). По данным других работ [4, 6, 9], величины этих параметров для LaCoO₃ несколько иные, но они отличаются не более, чем на 5·10⁴ нм. Полученные нами значения параметров a, b, c для NdCoO₃ хорошо согласуются с данными работы [13] (a = 0.5336, b = 0.5328, c = 0.7542 нм) и отличаются не более, чем на 5·10⁴ нм, от данных других авторов для орторомбически искаженного NdCoO₃ [14, 15].

Таблица 1

х	Структура	а ₀ , нм	b ₀ , нм	с ₀ , нм	а _{<i>R</i>} , нм	α_R , град.	V_0 , HM^3	V_R , HM ³	10 ² ·ε
0.00	R				0.5373	60.80		55.82	
0.10	R				0.5368	60.84		55.71	
0.25	R O	0.5372	0.5388	0.7564	0.5354	60.92	54.73	55.38	0.298
0.50	R	0.5363	0.5376	0.7560	0.5371	60.33	54.48	55.19	0.242
0.75	Ō	0.5364	0.5354	0.7553			54.23 .		-0.186
0.90	0	0.5353	0.5339	0.7546			53.92		-0.262
1.00	0	0.5336	0.5328	0.7542			53.61		-0.150

Параметры (a₀, b₀, c₀, a_R, α_R), объем (V_0 , V_R) и степень орторомбического искажения (ϵ) элементарной ячейки твердых растворов кобальтитов La_{1-x}Nd_xCoO₃

Результаты измерения электропроводности образцов приведены на рис. 1. Измерения электропроводности показали, что для всех полученных кобальтитов в интервале температур 400–800 К наблюдается достаточно размытый фазовый переход полупроводник — металл. Анализ опубликованных работ по электропроводности индивидуальных кобальтитов РЗЭ и твердых растворов на их основе показал, что данные разных исследователей часто заметно различаются между собой [1, 2, 8, 13, 16, 17], причем эти различия выходят за пределы заявленных авторами экспериментальных погрешностей.

Как видно из полученных нами данных, при нагревании исследованных твердых растворов кобальтитов происходит постепенный переход от полупроводникового типа проводимости к металлическому, при котором электропроводность увеличивается на 2-6 порядков. Электропроводность индивидуальных кобальтитов LaCoO3 и NdCoO3 изменяется на 3-4 порядка. Электропроводность твердого раствора La₀ Nd₀ CoO₃ изменяется приблизительно на 6 порядков, La_{0.25}Nd_{0.75}CoO₃ - на 5 порядков, La_{0.5}Nd_{0.5}CoO₃ - на 4 порядка, а La_{0.75}Nd_{0.25}CoO₃, La09Nd01CoO3 - на 3 порядка. Наибольшей (и примерно равной) электропроводностью до 800 К обладают образцы твердых растворов La0.75Nd0.25CoO3, La0.9Nd0.1CoO3. Выше 800 К наибольшую электропроводность имеет NdCoO3. Однако у него переход от полупроводниковой к металлической проводимости приводит к значительно меньшему росту электропроводности, чем у других твердых растворов исследованной системы LaCoO₃-NdCoO₃. Имеющиеся литературные данные по электропроводности индивидуальных кобальтитов лантана и неодима заметно различаются между собой. Так, по данным работы [3], величина удельной электропроводности поликристаллических образцов NdCoO₃ изменяется от $2.9 \cdot 10^{-3}$ Om⁻¹·cm⁻¹ (при T = 320 K) до 89 $Om^{-1} \cdot cm^{-1}$ (при T = 925 K), что близко к нашим данным. Однако, по данным работы [8], удельная электропроводность NdCoO3 несколько иная и в интервале температур 305-1042 К изменяется от 0.2 до 456 Ом⁻¹·см⁻¹. Полученные в настоящей работе данные по электропроводности LaCoO₃ близки к литературным данным [3, 13, 17].

На полученных нами температурных зависимостях удельной электропроводности (рис. 1), как и в других работах [3, 13, 16], сравнительно четко фиксируются температуры, при которых фазовый переход полупроводник — металл приближается к своему завершению, т. к. при этих температурах резко замедляется рост электропроводности. Для кобальтитов LaCoO₃ и NdCoO₃, по данным настоящей работы, эта температура равна 750 К.

Природа фазового перехода полупроводник – металл подробно исследована для кобальтита лантана LaCoO₃ [18, 19]. Согласно работам Гуденафа [19], при температурах ниже 35 К кобальтит лантана является диамагнитным диэлектриком, т. к. почти все ионы трехвалентного кобальта находятся в низкоспиновом состоянии, обозначаемом как Co (III), спиновый момент 3d⁶-электронов которых равен 0 ($t_{2g}^{6}e_{g}^{0}$). При нагревании наблюдается переход ионов из низкоспинового состояния в высокоспиновое Co³⁺($t_{2g}^{4}e_{g}^{2}e_{g}^{2}$), который наиболее интенсивно происходит в интервале температур 350–650 К. В работах, опубликованных в последние годы, проведено детальное изучение процессов изменения спинового состояния ионов кобальта [16, 20].

Рис. 1. Температурная зависимость удельной электропроводности твердых растворов La_{1-x}Nd_xCoO₃ при значениях *x*, равных 0 (1); 0.1 (2); 0.25 (3); 0.5 (4); 0.75 (5); 0.9 (6); 1.0 (7)

Как видно из рис. 1, высокотемпературный фазовый переход полупроводник – металл у кобальтитов лантана и редкоземельных элементов со структурой перовскита имеет место в сравнительно широком интервале температур (350–650 К) и протекает, вероятно, через ряд промежуточных стадий. Поскольку полученные нами зависимости $ln\sigma - 1/T$ не были линейными во всем исследованном интервале температур, они были разбиты на 4 прямолинейных участка, по которым определены энергии активации проводимости (табл. 2), соответствующие определенному электронному состоянию. Первый низкотемпературный (для исследованного интервала температур) линейный участок характеризует поведение электропроводности полупроводникового кобальтита $La_{1-x}Nd_xCoO_3$ ниже температуры начала

интенсивного перехода ионов кобальта из низкоспинового состояния $(t_{2g}^6 e_g^0)$ в промежуточное ($t_{2g}^{5}\sigma^{*1}$). К сожалению, для большинства исследованных нами твердых растворов La1-xNdxCoO3, за исключением NdCoO3, La09Nd01CoO3, La075Nd025CoO3, этот участок выявляется не очень четко, т. к. он расположен вблизи комнатной температуры, и ему принадлежит лишь небольшое число экспериментально измеренных величин электропроводности. В табл. 2 энергия активации электропроводности, определенная в этой области температур, обозначена как ЕА,1. Затем следует область температур фазового перехода полупроводник металл. В ней несколько экспериментальных точек, расположенных вблизи температуры T₁ начала фазового перехода, находятся на одной прямой, отличной от прямой, проведенной через точки, полученные при более высоких температурах, т. е. можно дополнительно выделить небольшую промежуточную область температур с энергией активации Е'_{А.1} (табл. 2). Энергия активации, определенная по прямой, проведенной через большинство экспериментальных точек в интервале температур фазового перехода полупроводник - металл, обозначена нами как Е_{4.2} (табл. 2). Энергия активации Е_{4.3} рассчитана для области температур выше температуры Т2, при которой начинается резкое замедление роста электропроводности, т. к. процесс перехода в металлическое состояние почти завершен (хотя и не полностью).

Таблица 2

$\sigma = \sigma_0 \times \exp\left(-\frac{E_A}{R \times T}\right)$ для твердых растворов La _{1-x} Nd _x CoO ₃								
		TV	E _A , эB					
Состав	1 ₁ , K	1 ₂ , K	EAI	E' _{A.1} .	E _{A,2}	E _{A.3}		
LaCoO ₃	350	750	0.174	0.295	0.519	0.059		
$La_0 Nd_{0,1}CoO_3$	350	650	0.047	0.156	0.514	0.022		
La0.75Nd0.25C0O3	365	640	0.045	0.204	0.600	0.019		
La _{0.5} Nd _{0.5} CoO ₃	345	630	0.162	0.258	0.606	0.028		
La _{0 25} Nd _{0.75} CoO ₃	330	685	0.142	0.322	0.630	0.031		
La _{0.1} Nd _{0.9} CoO ₃	350	720	0.150	0.346	0.880	0.082		
NdCoO ₃	340	750	0.039	0.117	0.840	0.048		

Значения энергии активации электропроводности (E_A) в уравнении

Видно, что величины энергии активации электропроводности $E_{A,2}$ возрастают с увеличением содержания неодима в образцах твердых растворов La_{1-x}Nd_xCoO₃. По данным [21], энергия активации электропроводности LaCoO₃ для температурных интервалов 200–400, 400–650, 650–900 К соответственно равна 0.20, 0.54, 0.19 эВ, что в пределах погрешности соответствует нашим данным (табл. 2). $E_{A,4}$ и $E_{A,2}$ для NdCoO₃ соответственно равны 0.04, 0.84 эВ, и они несколько больше, чем в работе [1].

Результаты измерения термического расширения приведены на рис. 2. На температурных зависимостях относительного удлинения образцов наблюдаются аномалии (изломы), связанные с фазовым переходом полупроводник – металл. На основании дилатометрических данных рассчитаны величины среднего термического коэффициента линейного расширения (α) образцов для различных температурных интервалов, которые имеют такую же природу, как и интервалы температур на зависимостях $\ln \sigma - 1/T$ (табл. 3). Коэффициенты α_1 , α_2 , α_3 , приведенные в табл. 3, отвечают состояниям, соответственно, до температуры T_1 начала фазового перехода полупроводник – металл, интервалу температур, в котором протекает этот фазовый переход, и выше температуры T_2 , т. е. в металлическом состоянии. В металлическом состоянии все исследованные кобальтиты имеют приблизительно одинаковые значения α_3 . Значения α_2 исследованных кобальтитов в интервале температур (T_1 – T_2), т. е. в интервале температур процесса фазового перехода полупроводник – металл, несколько выше величин α_1 и α_3 , отвечающих соответственно состояниям до и после этого фазового перехода.

В литературе имеются данные по термическому расширению индивидуальных кобальтитов РЗЭ [6–8, 10, 22, 23], которые также не всегда согласуются между собой. В работе [22] в интервале температур 370-1100 К средний коэффициент а LaCoO3 составил (2.19±0.03)·10⁻⁵К⁻¹, причем авторы сравнительно высокий КТР кобальтита лантана по сравнению с перовскитоподобными фазами других переходных металлов LaMO3±8 (M = Ti, Cr, Mn, Fe, Ni) объясняют наличием серии фазовых переходов, связанных с изменением электронных состояний ионов кобальта и выходом кислорода из кристаллической решетки LaCoO3-6 при увеличении температуры. В работе [23] установлено, что кривая относительного удлинения для LaCoO3 имеет несколько изломов, и ее можно приблизительно разделить на три участка: 293-423, 423-653, 653-1023 К со средними значениями КТР, равными 1.9·10⁻⁵K⁻¹, 2.8·10⁻⁵K⁻¹, 2.2·10⁻⁵K⁻¹ соответственно. В области 423-653 К с повышением температуры коэффициент линейного расширения резко возрастает, образуя максимум на кривой α = f (T). В работе [10] для NdCoO₃ в интервале температур 300-1100 К средний коэффициент α составил (2.79±0.02) · 10⁻⁵К⁻¹, а для LaCoO₃ он равен (2.29±0.03) 10⁻⁵К⁻¹, что, в пределах погрешности измерений, совпадает с результатами настоящей работы. В работе [7] для NdCoO3 на дилатометрических кривых никаких аномалий, свидетельствующих о фазовом переходе, не обнаружено, средняя величина КТР для интервала 300-1100 К составила (2.79±0.02) · 10⁻⁵K⁻¹.

Рис. 2. Температурная зависимость относительного удлинения твердых растворов La_{1-x}Nd_xCoO₃ при значениях *x*, равных 0 (1); 0.1 (2); 0.25 (3); 0.5 (4); 0.75 (5); 0.9 (6); 1.0 (7)

Выводы. Керамическим методом получены твердые растворы кобальтитов $La_{1-x}Nd_xCoO_3$ (x = 0.0 - 1.0), определены параметры их кристаллической решетки, в интервале температур 300–1100 К на воздухе изучены их электропроводность и термическое расширение. Установлено, что полученные твердые растворы $La_{1-x}Nd_xCoO_3$ при

x = 0.10 имеют ромбоэдрическую структуру, при x = 0.75; 0.90 – орторомбическую структуру, а при x = 0.25; 0.50 – структуру с орторомбическим и ромбоэдрическим искажением перовскита. Для всех исследованных кобальтитов обнаружены аномалии электропроводности и термического расширения, соответствующие фазовым переходам полупроводник – металл.

Авторы благодарны д-ру физ.-мат. наук И.О. Троянчуку за помощь в обработке рентгеновских данных и обсуждении результатов.

Работа выполнена при финансовой поддержке МНТЦ (проект № В-625).

Таблица 3

Средние коэффициенты термического линейного расширения (α _i ,	$\alpha_2, \alpha_3)$	для различ	ны
областей фазового состояния твердых растворов кобальтито	в La ₁₋	xNdxCoO3	

Состав	$\alpha_1 \cdot 10^5, K^{-1}$	Т, К	$\alpha_2 \cdot 10^5$, K ⁻¹	T ₂ , K	$\alpha_3 \cdot 10^5$, K ⁻¹
LaCoO ₃	2.14	420	3.10	735	1.94
$La_{0.9}Nd_{0.1}CoO_3$	2.29	400	3.32	715	1.96
La _{0.75} Nd _{0.25} CoO ₃	2.95	460	3.41	705	1.97
$La_{0.5}Nd_{0.5}CoO_3$	3.86	455	3.38	655	1.96
La _{0.25} Nd _{0.75} CoO ₃	2.63	410	3.82	695	2.04
$La_{01}Nd_{09}CoO_3$	3.08	385	3.82	705	1.97
NdCoO ₃	2.22	385	3.24	700	1.97

ЛИТЕРАТУРА

1. Пальгуев С.Ф., Гильдерман В.К., Земцов В.И. Высокотемпературные оксидные электронные проводники для электрохимических устройств. – М.: Наука, 1990. – 198 с.

2. Хартон В.В., Жук П.П., Вечер А.А., Тоноян А.А. Физико-химические свойства кобальтита лантана, легированного стронцием // Вестник БГУ. – 1990. – Сер. 2, № 2. – С. 8–12.

3. Черепанов В.А., Петров А.Н., Кропанев А.Ю. и др. Электрические свойства двойных оксидов РЗЭ и кобальтита состава RCoO₃ // Журн. физ. химии. – 1981. – Т. 55, № 7. – С. 1856–1857.

4. Kononyuk I.F., Tolochko S.P., Lutsko V.A. and Anishchik V.M. Preparation and properties of La_{1-x}Ca_xCoO₃ ($0.2 \le x \le 0.6$) // J. Solid. State Chem. – 1983. – Vol. 48, No 2. – P. 209–214.

5. Yoshii K., Abe H., Nakamura A. Magnetism and transport of $Ln_{0.5}Sr_{0.5}CoO_3$ (Ln = Pr, Nd, Sm and Eu) // Mat. Res. Bull. - 2001. - No 36. - P. 1447-1454.

6. Patil S.B., Keer H.V. and Chakrabarty D.K. Structural, electrical and magnetic properties in the system Ba_xLa_{1-x}CoO₃ // Phys. Stat. Sol. – 1979. – V. 52a, № 2. – P. 681–686.

7. Fondado M., Breijo M. P., Rey-Cabezudo C. et. al. Synthesis, characterization, magnetism and transport properties of $Nd_{1-x}Sr_xCoO_3$ perovskites // J. Alloys and Compounds. – 2001. – No 7. – P. 444–447.

8. Хартон В.В., Жук П.П., Тоноян А.А. и др. Физико-химические свойства кобальтита неодима, легированного стронцием и кальцием // Известия АН СССР. Неорган. материалы. – 1991. – Т. 27, № 12. – С. 37–41.

9. Cherepanov V.A., Gavrilova L.Ya., Filonova E.A. et al. Phase equilibria in the La – Ba – Co – O system // Mater. Res. Bull. – 1999. – V. 34. – P. 983–988.

10. Kharton V.V., Yaremchenko A.A., Naumovich E.N. Research on the electrochemistry of oxygen ion conductors in the former Soviet Union. II. Perovskite-related oxides // J. Solid State Electrochem. – 1999. – V. 3. – P. 303–326.

11. Sadaoka Y., Sakamoto M., Nunziante P. and Gusmano G. Rare earth perovskite-type oxides containing three metal elements from the decomposition of heteronuclear complexes // Proceedings of International Conference on Electronic Ceramics and Application, Electroceramics V, University of Aveiro, Portugal. September 2–4, 1996. – V. 2. – P. 421–424.

12. Курган С.В., Петров Г.С., Башкиров Л.А., Клындюк А.И. Физико-химические свойства твердых растворов Nd_xGd_{1-x}CoO₃ // Труды БГТУ. Сер. III. Химия и технология неорган. в-в. – 2003. – Вып. XI. – С. 52–57.

13. Bahadur D. Spin-state equilibrium in $LuCoO_3$ // Ind. J. Chem. A. – 1976. – V. 14. – P. 204–206.

14. Demazeau G., Pouchard M, Hagenmüller P. Sur de nouveaux composes oxygenes du cobalt + III derrives de la perovskite // J. Solid. State Chem. – 1974. – Vol. 9, № 3. – P. 202–209.

15. Jakobs St., Hartung R., Moebius H.-H., Wilke M. Sauerstoffelektroden aus Mischoxiden mit Zirkondioxid und Kobaltaten der seltenen Erden // Rev. Chim. Miner. – 1980. – V. 17, N_{2} 4. – P. 283–298.

16. Rao C.N.R., Parkash O., Bahadur D., Ganguly P. Itinerant electron ferromagnetism in Sr^{2+} -, Ca^{2+} -, ca^{2+} -, and Ba^{2+} -doped rare-earth orthocobaltites ($\mathrm{Ln}_{1-x}^{3+}\mathrm{M}_{x}^{2+}\mathrm{CoO}_{3}$) // J. Solid State Chem. – 1977. – Vol. 22, No 3. – P. 353–360.

17. Петров А.Н., Липатов Н.И., Зыбин Д.Н. и др. Свойства лантан-стронциевых кобальтитов La_{1-x}Sr_xCoO_{3-δ} как материалов катодов газоразрядных приборов // Изв. АН СССР. Неорган. материалы. – 1988. – Т. 24, № 2. – С. 294–298.

18. Bhide V.G., Rajoria D.S. Mossbauer studies of the high-spin-low-spin equilibria and the localized-collective electron transition in LaCoO₃ // Phys. Rev. – 1972. – V. 6, № 3. – P. 1021–1032.

19. Senaris-Rodriguez M.A., Goodenough J.B. Magnetic and transport properties of the system $\text{La}_{1-x}\text{Sr}_x\text{CoO}_{3-\delta}$ (0 < x ≤ 0.5) // J. Solid State Chem. – 1995. – V. 118, № 2. – P. 323–336.

20. Itoh M., Hashimoto Ju., Yamaguchi S., Tokura Yo. Spin state and metal-insulator transition in LaCoO₃ and RCoO₃ (R = Nd, Sm and Eu) // Physica B. -2000. - V. 281 & 282. - P. 510-511.

21. Rao C.N.R., Parkash Om and Ganguly P. Electronic and magnetic properties of LaNi_{1-x}Co_xO₃, LaCo_{1-x}Fe_xO₃, LaNi_{1-x}Fe_xO₃// J. Solid State Chem. – 1975. – Vol. 15, № 2. – P. 186–192.

22. Яремченко А.А., Хартон В.В., Вискуп А.П. и др. Физико-химические свойства кобальтита лантана, легированного магнием // Вестник БГУ. – 2001. Сер. 2, № 1. – С. 20–24.

23. Толочко С.П., Кононюк И.Ф., Зонов Ю.Г., Ивашкевич Л.С. Структура и свойства твердых растворов LaCo_{1-x}Cr_xO₃ // Изв. АН СССР. Неорган. материалы. – 1987. – Т. 23, № 5. – С. 829–833.

state in outern and threat armine to an