- 4) для каждого предприятия, области и подзоны в целом разработать и обосновать рациональную структуру лесов и опгимальную лесистость территории;
- 5) разработать с учетом новейших достижений лесохозяйственной науки и практики технологию лесовыращивания, позволяющую при более низкой трудоемкости и энергоемкости получить максимальное количество биомассы с каждого гектара лесной площади;
- 6) уточнить и разработать новые нормативы для инвентаризации лесов и организации лесного хозяйства с учетом зональности территории БССР.

ЛИТЕРАТУРА

1. Материалы XXVII съезда КПСС. — Минск, 1986. 2. Справочник работника лесного хозяйства. — 4-е изд., перераб. и доп. — Минск, 1986. 3. Ю р к е в и ч И.Д., Г е л ь т м а н В.С. География, типология и районирование лесной растительности Белоруссии. — Минск, 1965. 4. С м е я н Н.И., С о л о в е й Н.И. Почвенно-географическое районирование территории Белорусской ССР. Почвы Белорусской ССР. — Минск, 1974. 5. Ю р к е в и ч И.Д., Г е л ь т м а н В.С. Рациональное изменение состава лесов Белоруссии // Лесн. хоз-во. — 1963. — № 10. 6. А р е щ е н к о В.Д., Я н у ш к о А.Д. Экономика и организация лесохозяйственного производства Белоруссии. — Минск, 1972.

УДК 630*892.1

л.п. смоляк, л.и. бережная

ВЛИЯНИЕ ЭКОЛОГИЧЕСКИХ УСЛОВИЙ НА СОДЕРЖАНИЕ СВОБОДНЫХ АМИНОКИСЛОТ В ХВОЕ

В хвое ели и сосны содержатся физиологически активные вещества — витамины и аминокислоты, что послужило основой для широкого использования ее в народном хозяйстве, в частности в качестве витаминной добавки в корм животным.

В растениях аминокислотный обмен теснейшим образом связан с обменом витаминов, витаминов, поскольку некоторые их производные являются исходным материалом для синтеза целого ряда соединений, в том числе и витаминов. Так, например, триптофан дает начало никотиновой кислоте, которая в свою очередь может давать начало стимуляторам роста растений; глицин (гикокол), глютаминовая кислота и цистеин, соединяясь, образуют глютатион — вещество, играющее важную роль в регулировании окислительно-восстановительных процессов и действия ферментов в организме; аланин является исходным веществом для жиров и каротиноидов.

Содержание аминокислот и витаминов в растении варьирует в зависимости от экологических условий [1, 2] и определяет качество хвойно-витаминной муки. В настоящее время на это не обращают внимания и заготовку древесной зелени производят с любой части кроны, в насаждениях различных бонитетов, что, на наш взгляд, недопустимо, так как при добавке древесной зелени низкого качества с незначительным содержанием физиологически активных веществ не повышается содержание в кормах ни витаминов, ни амино-

кислот. Кроме того, заготовка такой зелени приводит к лишним потерям средств и трудовых затрат.

Ранее нами в насаждениях разных типов леса была проведена оценка хвои сосны по количеству незаменимых аминокислот [3].

Анализ данных содержания свободных аминокислот в хвое сосны различных бонитетов (табл. 1) свидетельствует о значительной разнице в ней не толь-

Таблица 1

Содержание свободных аминокислот в хвое сосны в насаждениях 15-25-летнего возраста различных бонитетов и классов роста (мг/100 г сухого вещества)

	Бонитет Класс роста					
Аминокислоты						
	I	II	III	IV	V	
Цистеин	$\frac{12.4}{3,17}$	$\frac{2,18}{2,62}$	$\frac{2,06}{2,10}$	1,80	<u>0,98</u> следы	
Лизин	$\frac{14.0}{12.06}$	$\frac{10,3}{3,69}$	$\frac{11,4}{2,69}$	$\frac{7,50}{2,00}$	4,93 1,75	
Аргинин	$\frac{10,4}{7,18}$	$\frac{4,90}{3,73}$	$\frac{4,80}{2,64}$	$\frac{2,93}{2,03}$	$\frac{0,89}{1,28}$	
Аспарагин овая кислота	$\frac{30,3}{12,63}$	$\frac{17,7}{11,67}$	7,30 8,85	$\frac{2,10}{4,94}$	1,94	
Глютаминовая кислота	$\frac{23,7}{25,77}$	$\frac{13,8}{20,99}$	$\frac{9,4}{16,96}$	$\frac{4,93}{12,34}$	$\frac{0.75}{10.17}$	
Серин	$\frac{10,0}{10,07}$	5,3 9,81	$\frac{2,4}{8,94}$	$\frac{1,62}{7,72}$	$\frac{0,74}{5,84}$	
Глицин	$\frac{11,4}{18,01}$	$\frac{6,7}{16,32}$	$\frac{3,4}{10,12}$	1,74 9,31	$\frac{0,87}{6,31}$	
Треонин	$\frac{2,96}{3,63}$	$\frac{1,72}{2,92}$	$\frac{1,20}{2,28}$	$\frac{0,56}{2,03}$	$\frac{0.09}{1.36}$	
Атанин	$\frac{20,3}{16,02}$	5,94 9,69	$\frac{5,62}{6,28}$	4,36	$\frac{3,98}{3,13}$	
Гфозин	1,03	0,84	<u>0,70</u>	0,60	0,54	
Зайцин	<u>4,39</u> 2,81	0,43	$\frac{0,40}{1,12}$	$\frac{0,40}{1,10}$	$\frac{0,36}{0,87}$	
Эшин	$\frac{36,6}{23,49}$	$\frac{32,5}{20,46}$	$\frac{36,0}{21,30}$	25,2 22,36	$\frac{25,4}{21,17}$	
эстицин	1,65	_ 1,37	0,68	<u>-</u> 0,63	0,56	
troro	$\frac{177,48}{136,49}$	102,31 104,42	84,68 83,96	$\frac{53,74}{70,6}$	41,47 55,68	
Іроцент к контролю	100	57,6 76,5	47,7 61,5	$\frac{30,3}{51,7}$	23,4 40,8	

ко суммы аминокислот, но и каждой аминокислоты в отдельности. Если выразить это в процентном отношении, приняв суммарное количество аминокислот за 100 %, то в насаждениях II и III бонитетов сумма аминокислот составит 57,6 и 47,7 %, IV и V бонитетов — 30,3 и 23,4 % соответственно.

Как известно, деревья в древостое различаются по интенсивности роста (по классам роста по Крафту). Из табл. 1 также видно, что содержание суммы свободных аминокислот снижается от I до V класса роста. Если содержание аминокислот в хвое сосны I класса роста принять за $100\,\%$, то сумма аминокислот в хвое деревьев II класса роста составит $76,5\,\%$, III класса — 61,5, IV класса — 51,7, V класса — $40,8\,\%$.

Таким образом, для обеспечения качества хвойно-вигаминной муки нецелесообразно производить заготовку древесной зелени в насаждениях III—V бонитетов и деревьев IV—V классов роста. С деревьев III класса роста заготовка зелени возможна, но при этом следует иметь в виду, что качество этой хвои будет на 40 % ниже, чем деревьев I класса.

При проведении физиологических исследований распределения продуктов фотосинтеза в сосне [4] установлено, что нижняя часть кроны недостаточно обеспечивается продуктами фотосинтеза и в основном использует ассимилянты, поступающие из верхней кроны. Поэтому содержание физиологически активных веществ, в том числе и аминокислот, в нижних частях значительно меньше, чем в верхних. Это отчетливо видно из табл. 2 (содержание аминокислот в средней части кроны составляет 59,4% от количества их в верхней части, в нижней — 34,6%). Следовательно, заготовку древесной зелени необходимо производить с верхней части кроны.

Таблица 2

Содержание свободных аминокислот в хвое сосны в различных частях кроны в насаждениях 15—30-летнего возраста І бонитета деревьев І класса роста (мг/100 г сухого вещества)

Аминокислоты	Части кроны			
	верхняя	средняя	нижияя	
Цистеин	11,8	3,2	2,7	
Лизин	12,7	6,8	6,4	
Аргинин	11,3	3,4	2,5	
Аспарагиновая кислота	20,7	6,7	4,1	
Серин	11,2	9,1	1,8	
Глицин	9,8	7,2	1,7	
Глютаминовая кислота	19,9	12,1	4,0	
Треонин	3,2	2,3	0,6	
Аланин	20,4	12,4	4,2	
Тирозин	1,1	0,9	0,7_	
Лейцин	4,4	2,3	0,4	
Валин	26,2	24,3	23,8	
Итого	152,7	90,7	52,9	
Процент к контролю	100	59,4	34,6	

Оценивая питательные качества древесной зелени в целом, можно сделать вывод, что заготавливать древесную зелень для получения высококачественной хвойно-витаминной муки следует в верхней части кроны деревьев І класса роста. В отдельных случаях допустима заготовка зелени из средней части кроны в насаждениях Іа и ІІ бонитета І и ІІ класса роста.

Возрастные различия древостоев не оказывают существенного влияния на содержание в хвое аминокислот. К примеру, в хвое 15—30-летних насаждений I бонитета сумма аминокислот составляет 136—177 мг/ 100 г сухого вещества, 60—70-летних насаждений аналогичного бонитета — 140—150 мг/ 100 г сухого вещества. Поэтому заготавливать древесную зелень можно в насаждениях любого возраста, но только до наступления возраста главной рубки (80 лет).

В настоящее время качество хвойно-витаминной муки принято оценивать по содержанию в хвое каротина. Однако это односторонняя оценка и поэтому в некоторой степени неполноценная. Каротин не обладает витаминной активностью. Он представляет собой провитамин А и относится к группе каротиноидов, окрашенных в желтый цвет. Последние в отличие от хлорофилла более устойчивы к воздействию неблагоприятных факторов (хвоя или листья, выдержанные в темноте, желтеют, так как хлорофилл разрушается, а жептые пигменты не изменяются). Содержание каротиноидов в зеленых листьях составляет в среднем 0,7–0,2%, при пересчете их на сухую массу существенно изменяется в течение вегетации растений и зависит от условий произрастания. К примеру, установлено [5], что даже временное избыточное увлажнение почвы приводит к значительному снижению каротина в хвое сосны.

ЛИТЕРАТУРА

1. Бережная Л.И. Жизнедеятельность сосны обыкновенной в зависимости от экологических факторов: Автореф. дис. ... канд. биол. наук. — Минск, 1975. 2. Влияние экологических факторов на жизнедеятельность сосны в фитоценозах /Юркевич И.Д., Смоляк Л.П., Бережная Л.И., Филипович Н.М. // Ботаника (исследования). — 1975. — Вып. XVII. 3. Бережная Л.И., Смоляк ова Н.М. Аминокислоты хвои сосны разных типов леса — показатель питательной ценности хвои // Лесн. хоз-во. — 1983. — № 8. — 10 шкевич П.И. Распределение продуктов фитоценоза в сосне // Тр. ин-та биолегии УФАН СССР. — 1965. — Вып. 43. 5. Веретенни ков А.В. Физиологические ресновы устойчивости древесных растений к временному избытку влаги в почве. — М., 1968.

YJK 581,526 (476)

Л.П. СМОЛЯК, Е.Н. ИВКОВИЧ

ФОРМИРОВАНИЕ РАСТИТЕЛЬНОСТИ В ЭКОТОНЕ СУХОДОЛ — ВЕРХОВОЕ БОЛОТО СОСНОВЫХ ЛЕСОВ

По вопросу о фитоценотических границах существуют два мнения: конвещия растительного континуума [1—3] и классическая концепция растительных сообществ, организованных ценотическими отношениями в целоствость [4—7]. Согласно А.А. Ниценко [8], в природе имеет место не абсолютвая дискретность, не однообразная непрерывность, а сочетание границ и усло-