реев Б.М. Электротехнические материалы. Л., 1969. Яма нов С.А. Химия и радиоматериалы. М., 1970. 6. Ренне В. Т. Электрические конденсаторы. Л., 1969. 7. Олехнович А.М. и др. Учет электрических и теплофизических свойств модифици рованной древесины при выборе области ее рационального применения. — Мат-лы Всесоюзн. научн. конф. Минск, 1974. 8. Олехнович А.М., Туманов С.Д. Электрические свойства модифицированной древесины. -- В сб.: Модификация древесины синтетическими полимерами. Минск, 1973. 9. Вержинская А.Б., Новиченок Л.Н. Новый универсальный метод определения теплофизических коэффициентов. —ИФЖ. Т. III, 1962. № 2. 10. Фогель В.О., Алексеев П.Г. Новый метод комплексного определения теплофизических характеристик полимерных териалов и их зависимости от параметров внешней среды температуры и давления. — ИФЖ. Т. У, 1962, № 2. 11. Жда нов П.С. Физика твердого тела. М., 1962. 12. Миснар Теплопроводность твердых тел, жидкостей, газов и их позиций, М., 1968. 13. Перелыгин А.М., Уголев Б.Н. Древесиноведение. М., 1971.

Г.М. Хвесько

АНИЗОТРОПИЯ ПРЕДЕЛОВ ПРОЧНОСТИ ДРЕВЕСИНЫ БЕРЕЗЫ, ПРОПИТАННОЙ СМОЛОЙ ПН-1

Древесина — материал с ярко выраженной анизотропией физико-механических свойств, при изучении которых древесину принято считать ортотропным материалом [1].

Модификация древесины путем пропитки различными мономерами и олигомерами с последующей их полимеризацией приводит к существенному изменению ее физико-механических свойств.

Целью данной работы является экспериментальное исследование влияния пропитки смолой ПН-1 древесины березы на ее пределы прочности при сжатии под углами к волокнам.

Для оценки эффекта модификации испытаниям подвергалась как модифицированная, так и натуральная древесина березы, которая являлась исходным материалом для получения модифицированной древесины.

Образцы для испытаний (20х20х20 мм) изготавливались из натуральной и модифицированной древесины с учетом нагружения под различными углами в продольно-радиальной и продольно-по-тангенциальной плоскостях. В момент испытания влажность образцов была 6+7%. Для образцов модифицированной древесины влажность определялась по отношению влаги в образце к весу образца исходной древесины в абсолютно сухом состоянии [2]. Степень пропитки оценивалась коэффициентом пропитки оказавшимся равным 0,85 ± 0,05. В литературе широко распространена оценка пропитки по привесу (5,%) полимера в древесине. Переход к коэффициенту пропитки к можно сделать по формуле

 $k = 0.01 \frac{sy}{m_{\Pi}y_{H}}$

где χ , χ — объемные веса абсолютно сухой натуральной древесины и наполнителя (полимера); m — коэффициент пористости древесины, равный $m_{\Pi} = \frac{\chi_{o} - \chi}{\chi_{o}}$; $\chi_{o} = 1.54 \, \text{rc/cm}$.

Для натуральной древесины березы при отклонении сжимающего усилия от направления вдоль волокон до $\angle =45^\circ$ определялись пределы прочности по разрушающей нагрузке. При $\angle > 45^\circ$ были получены условные пределы прочности по нагрузке, взятой с диаграммы $P - \triangle 1$ в точке отклонения ее от прямолинейного участка. При испытании модифицированной древесины во всем диапазоне изменения угла \angle наблюдались хрупкие разрушения образцов. Для каждого избранного значения угла \angle испытывалось по $6 \div 8$ образцов. Результаты опытов обработаны статистически. Показатели точности не превысили 5%. Средние значения пределов прочности натуральной и модифицированной смолой $\Pi H - 1$ древесины березы приведены в табл. 1.

Из данных табл. 1 видно, что модификация древесины привела к существенному изменению прочности при всех значениях угла \mathcal{L} . Начиная с $\mathcal{L}=30^\circ$, увеличение прочности становится наиболее заметным, достигая поперек волокон максимального значения. Это приводит к значительному снижению степени анизотропии прочности в модифицированной древесине. Количественная оценка анизотропии прочности в натуральной и модифицированной древесине и степень снижения анизотропии пределов прочности при разных \mathcal{L} дана в табл. 2.

Таблица 1

	Натуральная	древесина		Модифицированная древесина		
٨	Fr(L),	σ _{t(L)} , κrc/cм ²	٨	σ* _{r(λ)} , κrc/cм ²	σ* t(d)' krc/cm ²	
0	761	761	0	1540	1540	
10	670	608	10	1453	1279	
20	545	460	20	1163	1124	
30	385	315	30	1102	1057	
45	271	193	45	1090	1038	
60	178	124	60	992	947	
90	113	70	90	978	962	

Таблица 2

Натуральная древесина				дифициро Ввесина	ванная	5, 15,	5-15.00
٨	<u> </u>	G _t (U)	d	でa* で* r(d)		5 * /5 *	σα/σ _t (λ)
0	1	1	0	1	1	1	1
10	1,135	1,250	10	1,060	1,203	1,070	1,039
20	1,395	1,653	20	1,323	1,370	1,054	1,207
30	1,976	2,415	30	1,397	1,459	1,414	1,652
45	2,808	3,940	45	1,412	1,482	1,988	2,657
60	4,270	6,140	60	1,552	1,628	2 , 750	3,770
90	6,740	10,860	90	1,574	1,602	4,280	6 , 775

Данные табл. 2 свидетельствуют о том, что с увеличением угла Д в продольно-радиальной и продольно-тангенциальной плоскостях модифицированная древесина проявляет свойство анизотропиии прочности по сравнению с натуральной древесиной значительно слабее. Как видно из двух последних столбнов табл. 2, с ростом 🕹 снижение степени анизотропии пределов прочности у модифицированной древесины возрастает. Из указанных плоскостей больший эффект достигается в продольнотангенциальной плоскости. Различное проявление эффекта дификации в продольно-радиальной и продольно-тангенциальной плоскостях приводит к практически равной прочности модифици рованной древесины в радиальном и тангенциальном направлениях. Конечно, этот вывод следует распространять только на модифицированную древесину с большими коэффициентами пропитки ($k = 0.8 \div 0.9$). В данном случае при k = 0.85 отношение G_{h}^{*}/G_{t}^{*} оказалось равным 1,017. Сравнивая значения G_{h}^{*}/G_{t}^{*} оказалось равным 1,017. Сравнивая значения G_{h}^{*}/G_{t}^{*} оказалось равным 1,017. Сравнивая значения G_{h}^{*}/G_{t}^{*} и $G_{t}^{*}/G_{t}^{*}/G_{t}^{*}$, убеждаемся, что они очень близки. Это дает основание считать, что при больших значениях (при исследовании прочностных свойств) модифицированную древесину можно рассматривать как транстропный (поперечно изотропный) материал.

Литература

1. Рабинович А.Л. Об упругих постоянных и прочности анизотропных материалов. — Труды ЦАГИ, 1946, № 582. 2. Любецкий Д.И., Макаревич С.С., Хвесько Г.М. К вопросу влажности модифицированной древесины. — В сб.: Модификация древесины синтетическими полимерами, вып. 1 Минск, 1973. 3. Хвесько Г.М., Любецкий Д.И. О количественной оценке пропитки древесины. — В сб.: Механизация лесоразработок и транспорт леса, вып. 4. Минск, 1974.

Г.М. Хвесько, Д.И. Любецкий, М.И. Губич УДЕЛЬНЫЕ ХАРАКТЕРИСТИКИ ПРИ СЖАТИИ МОДИФИЦИРОВАННОЙ ДРЕВЕСИНЫ

Проблема рационального использования модифицированной древесины в настоящее время весьма актуальна. В этой связи возникает необходимость более полно проанализировать ее положительные механические свойства как конструкционного материала.

Установлено, что модификация древесины существенно повышает прочность и жесткость при сжатии, особенно в направлениях, перпендикулярных к волокнам. Следовательно, степень анизотропии упругих и прочностных свойств при сжатии модифицированной древесины значительно снижается.

При модификации увеличивается плотность древесины. Это необходимо учитывать, применяя ее в отдельных отраслях промышленности (транспортное машиностроение, авиастроение, судостроение и т.д.), где требуется увеличение прочности и жесткости конструкции с одновременным уменьшением веса.