ГИДРОИЗОЛЯЦИОННЫЙ МАТЕРИАЛ НА ОСНОВЕ СМЕСЕВЫХ ТЕРМОПЛАСТИЧНЫХ КОМПОЗИЦИЙ

С.С. Мигаль, Р.М. Долинская, В.В. Русецкий, Е.И. Щербина Белорусский государственный технологический университет

г. Минск, Беларусь

Эффективность использования компонентов полимерных композиций определяется не только комплексом полезных свойств, но и такими немаловажными факторами, как доступность исходного сырья и его стоимость. С этой точки зрения несомненный интерес представляет использование вторичного сырья различных областей промышленности в полимерных композициях.

Проблема использования отходов различных отраслей промышленности Беларуси приобретает все большую актуальность и тесно связана с проблемой использования отходов в качестве ингредиентов полимерных композиций.

Целью данной работы явилась разработка рецептуры и технологии изготовления термопластичных композиций (ТПК) с использованием отходов для создания противокоррозионного покрытия.

Для повышения долговечности гидроизоляционного материала, увеличения его прочности, улучшения деформационной способности при различных температурах эксплуатации, повышения водостойкости разработаны рецептура и технология изготовления нового гидроизоляционного материала, основой которого являются смесевые термопластичные резины, полученные смешением в заданном соотношении пластика и каучука.

В качестве объектов исследования были выбраны бутадиенстирольный каучук СКС-30-АРКМ-15 (ГОСТ 11138-72) и отходы полиэтилена высокого давления ПЭВД разных марок в виде использованной тары, обрезков пленок и т.д.

Известно, что к изоляционным материалам предъявляются чрезвычайно высокие требования, такие как низкое водопоглощение, высокое электросопротивление, отсутствие текучести при высоких и хрупкости при низких температурах, достаточная прочность и устойчивость к механическому воздействию грун-

та, биостойкость, технологичность изготовления. В настоящее время в странах СНГ в качестве гидроизоляционных материалов применяются рулонные материалы, полученные на основе нефтяных битумов, асбеста и эластомера /1-4/. Наряду с положительными свойствами эти гидроизоляционные материалы имеют ряд недостатков - низкая морозостойкость и недостаточная прочность при значительных нагрузках, использование дорогостоящего и канцерогенного сырья.

Выбор предлагаемых нами полимеров не случаен и может быть объяснен не только с точки зрения доступности и относительной дешевизны сырья, но и из термодинамических соображений. Бутадиенстирольный каучук и ПЭВД обладают близкими энергиями когезии (табл.1), что согласно теории растворимости Флори /5/ способствует их лучшей совместимости.

Таблица 1 Основные физико-химические показатели исследуемых полимеров

Показатели	Полимеры		
1.5	CKC-30-APKM-15	ПЭВД	
Плотность, кг/м	920-930	919	
Средняя молекулярная масса, тыс.ед.	350	35	
Параметр растворимости, (МДж/м³)*/2	17,4	16,3	

Для достижения высокой степени диспергирования полиэтиленовых отходов и обеспечения эффективного взаимодействия между полимерами нами было использовано высокотемпературное смешение полимеров.

На рис.1 показано, что по мере увеличения содержания пластика улучшаются технологические свойства композиций (снижается вязкость по Муни и повышаются реологические характеристики), а также увеличиваются практически все прочностные характеристики: условная прочность при растяжении, сопротивление при раздире и твердость. Наблюдаемое упрочнение при сравнительно высоких эластических показателях можно объяснить особенностями образующейся в результате высокотемпературного смешения структуры термопластичных композиций (ТПК) типа взаимопроникающих сеток.

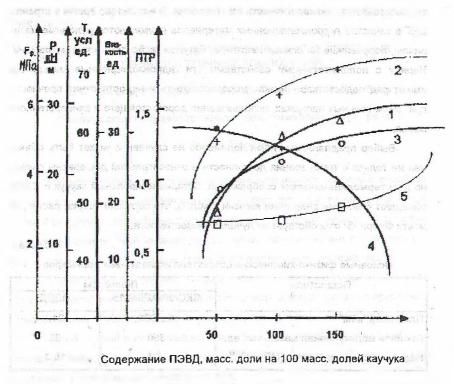


Рис.1. Влияние содержания ПЭВД на свойства ТПК на основе СКС-30-АРКМ-15: 1 - условная прочность при растяжении, МПа; 2 - относительное удлинение при разрыве, %; 3 - твердость по ШОР, усл.ед.; 4 - вязкость по Муни, ед.; 5 - ПТР, г = 10 мин.

Данные, полученные в результате электронномикроскопического анализа (рис.2), позволяют сделать вывод о гетерофазности полученных композиций. Светлые участки на микрофотографиях представляют собой полиэтилен, а темные - пустоты, образовавшиеся в результате экстракции растворителем каучука из объема образца. Из этого следует, что ПЭВД образует непрерывную фазу, морфология которой напоминает губку с открытыми порами, имеющими микронные размеры. При тщательном изучении снимка можно убедиться, что пустоты также соединяются друг с другом, образуя непрерывную систему. При исследовании смесей каучука СКС-30-АРКМ-15 и полиэтилена с различным со-

отношением компонентов была определена область составов композиций, которые имели взаимопроникающую двухфазную структуру. Оказалось, что в указанных бинарных смесях ПЭВД образует непрерывную фазу не только при высоких концентрациях, но и вплоть до 15 масс.%.

Рис. 2. Электронная микрофотография тонкого среза ТПК на основе СКС-30-АРКМ и ПЭВД в соотношении 1:1.

Между двумя фазами - непрерывной фазой ПЭВД и непрерывной фазой каучука имеется граничный слой со специфическим строением, которое обусловлено диффузией и взаимной сегментальной растворимостью полимеров. Очевидно, что особенности поведения и свойства ТПК связаны с условиями образования и перестройки граничного слоя. Для сохранения свойств ТПК на довольно высоком уровне особенно важно стабилизировать толщину граничного слоя, а для этого нужно свести к минимуму факторы, способствующие расслоению смеси (наиболее важным из них является температура формования композиции).

Как видно из рис.3, наиболее оптимальные свойства ТПК могут быть достигнуты, когда разница между температурой формования композиции и температурой плавления пластика составляет примерно 20 °C. Очевидно, в этом температурном интервале удачно сочетаются текучесть материала и минимальное изменение толщины граничного слоя.

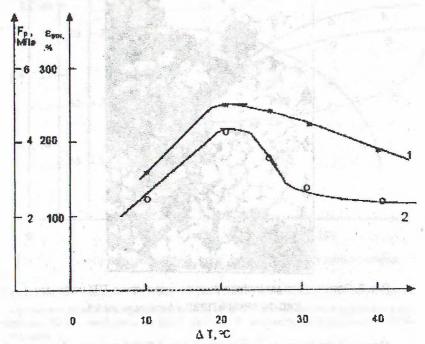


Рис. 3. Зависимость условной прочности при растяжении (1) и относительного удлинения при разрыве (2) от разницы температур формирования и плавления пластика ΔT .

С целью создания промышленных образцов ТПК нами были проведены исследования по изучению характера влияния на свойства ТПК наполнителей и пластификаторов. Выявлено, что совместное использование пластификатора ПН-6 и наполнителя техуглерода П803 в соотношении 65 и 80 масс. долей на 100 масс. долей каучука соответственно позволяет получать ТПК с хорошим уровнем физико-механических свойств (табл.2).

Таблица 2
Влияние содержания наполнителя и пластификатора на свойства ТПК
на основе СКС-30-АРКМ-15 и ПЭВД

Техуглерод П803, масс. доли на 100 масс. до- лей каучука	Пластификатор ПН-6, масс. доли на 100 масс. до- лей каучука	Условная прочность при растяжении, МПа	Относительное удлинение при разрыве, %	Твердость по Шору, усл. ед.
0	0	2,75	160	48
65	0	3,10	110	51
0	80	1,50	150	29
65	80	2,30	130	33
65	100	1,50	190	44

На основании проведенных нами исследований отработаны условия получения и разработаны базовые рецептуры ТПК, которые можно использовать для получения гидроизоляционных материалов. В табл.3 приведены физикомеханические показатели этих материалов в сравнении с требованиями, предъявляемыми к композициям, используемым для изготовления гидроизоляционных материалов. Как видно из представленных данных, разработанные нами термопластичные композиции по своим параметрам не только удовлетворяют всем требованиям, но и превосходят их /6/.

Таблица 3 Физико-механические показатели опытного гидроизоляционного материала

Показатели	Требования, предъяв- ляемые к гидроизоляционным материалам по ТУ 381051819-88	Олытный образец
Пластичность по Карреру	не менее 0,07	0,1
Условная прочность	не менее	- 24 July 1
при растяжении, МПа	0,6	2,3
Относительное удлинение	не менее	
при разрыве, %	80	130
Водопоглощение через 24 ч, %	не более 0,5	0,3
Гибкость на стержне d=10 мм	не должно быть	выдерживают
лри T = -30 °C	трещин	

Таким образом, показана возможность создания гидроизоляционного материала на основе смесевых термопластичных композиций. Совместно с АО "Беларусьрезинотехника" были проведены опытные испытания и организован промышленный выпуск гидроизоляционного рулонного материала на основе ТПК. Основным преимуществом этого материала является отсутствие в рецептуре канцерогенного наполнителя асбеста, битума, что делает его экологически более чистым материалом. Композиция обладает повышенной гнило-, водо- и морозостойкостью, может применяться в различных климатических зонах и позволяет сократить сезонность строительных работ. Рулонный гидроизоляционный материал технологичен, надежен в эксплуатации, позволяет снизить материалоемкость примерно в 2-3 раза, долговечность материала составляет приблизительно 15-20 лет.

ЛИТЕРАТУРА

- 1. Козловская А.А. Изоляционные материалы для защиты магистральных трубопроводов от коррозии. М.: Гостоптеххимиздат, 1962. 152 с.
- 2. Провинтеев И.В., Бурлаченко П.Е., Ватажина В.И., Панкратов В.Ф. Гидроизоляционные, кровельные и герметизирующие материалы. М.: Госстройиздат, 1963. 230 с.
- 3. Сурмели Д.Д., Сонина Н.М. Битумно-полимерное вяжущее для морозоустойчивых кровельных и гидроизоляционных материалов // Строительные материалы. 1968. №2. С.26-27:
- 4. Слепая Б.М., Булай Е.И., Синицина А.А. Герметизирующие материалы с заданными свойствами // Труды ГосНИИ гражданской авиации. 1990. № 293. С.16-21.
- 5. Полимерные смеси / Под ред. Д. Пола и С. Ньюмена М.: Мир, 1981. Т.1. 549 с.
- 6. ТУ 381051819 «Бризол».