ю. и. холькин

1970

К ВОПРОСУ ОБ ОПРЕДЕЛЕНИИ И КЛАССИФИКАЦИИ ХРОМАТОГРАФИЧЕСКИХ МЕТОДОВ

Хроматография — наиболее быстро развивающийся метод аналитической химии. За сравнительно короткий промежуток времени было предложено много принципиально отличных методов хроматографического анализа, что привело к необходимости их классификации. В то же время до сих пор нет единого общепринятого определения хроматографии, которое охватывало бы все виды хроматографического анализа и одновременно учитывало специфику этого метода.

Рассмотрение этих общих вопросов хроматографии представляет ин-

терес.

Для иллюстрации многообразия хроматографических методов по-

лезно кратко вспомнить историю их развития.

В 1903 г. М. С. Цвет сделал первое сообщение [1] о новом методе исследования сложных смесей органических соединений, который он назвал хроматографическим анализом. В то время он не мог предполагать, что этот метод получит широкое аналитическое и технологическое применение в различных отраслях промышленности и приведет к новым крупным открытиям во многих областях естествознания, что через 60 лет будет разработана конструкция хроматографа [2] для анализа летучих продуктов на поверхности Луны, который позволяет качественно и количественно определять следы веществ с температурами кипения от —182 до +72°С.

Как правило, при разработке любого нового открытия проходит длительный период между моментом выяснения основных положений и детальной разработкой вопроса. Тем более удивительной является работа М. С. Цвета, который не только предложил, но и детально разработал различные варианты хроматографического анализа, указал пути его дальнейшего развития и применил его для изучения чрезвычайно сложных органических соединений растительного происхождения, главным образом пигментов.

Уже в первом сообщении о новом методе М. С. Цвет четко сформулировал принципы и возможности хроматографии, сообщил о больших экспериментальных работах по применению этого способа к анализу хлорофилла. Он писал: «Как лучи света в спектре, в столбике углекислого кальция закономерно располагаются различные компоненты смеси пигментов, давая возможность своего качественного и количественного определения» [3]. Основные работы М. С. Цвет проделал с окрашенными веществами, однако он указал, что «описанные явления адсорбции присущи не только хлорофилловым пирментам; ясно, что самые разнообразные окрашенные или бесцветные химические соединения подлежат тем же

закономерностям». Широкое применение хроматографических методов для анализа как окрашенных, так и бесцветных веществ подностью под-

твердило правильность научного предвидения М. С. Цвета.

Метод М. С. Цвета получил свое развитие с 1931 г. после публикации работ Куна и Ледерера [4] по препаративному разделению каротинов и ксантофиллов на колонках с карбонатом кальция и алюминия. Адсорбционный хроматографический анализ бесцветных веществ был впервые осуществлен в 1938 г. Штейгером и Рейхштейном [5], которые разработали технику жидкостной хроматографии. Перевод разделенных компонентов в фильтрат, являющийся основой жидкостной хроматографии, также отмечался М. С. Цветом: «...вещества, образующие с применяемым порошком диссоциирующие адсорбционные соединения, медленно спускаются вниз в виде колец и могут быть уловлены у концевого отверстия трубки, каждое отдельно от других [6].

Фронтальный анализ и вытеснительное проявление, являющиеся разновидностями адсорбционного хроматографического анализа, пред-

ложены Тизелиусом [7] и развиты в работах С. Классона [8].

Метод хроматографии в тонких слоях, получивший широкое развитие за последние 5—6 лет, предложен в 1938 г. Н. А. Измайловым и М. С. Шрайбером [9].

Заслуга в разработке ионообменного метода хроматографии принадлежит Швабу [10], первые работы которого были опубликованы в 1937—

1940 гг.

Началом для развития новых, наиболее распространенных в настоящее время хроматографических методов, послужило открытие Мартином и Синджем в 1941 г. распределительной хроматографии, которую они использовали при изучении аминокислотного состава белков [11]. За разработку и практическое применение распределительной хроматографии эти исследователи в 1952 г. удостоены Нобелевской премии [12].

В 1943 г. Гордон, Мартин и Синдж [13] и в 1944 г. Консден, Гордон и Мартин [14] описали новый тип распределительной хроматографии, при которой разделение смесей веществ осуществляется не в колонке, а на полоске фильтровальной бумаги. С этих работ начался расцвет хромато-

графии на бумаге [15].

В 1952 г. появилась первая работа Джемса и Мартина [16] по газожидкостной распределительной хроматографии. С помощью нового метода ими проведено разделение летучих жирных кислот от муравьиной до додекановой. В настоящее время этот метод находит наиболее широкое развитие и применение в различных областях науки и практики.

Таким образом, за сравнительно короткий период времени хроматографические методы заняли ведущее место в аналитической химии, нашли исключительно широкое применение в самых различных отраслях

знаний.

С развитием хроматографических методов выдвигалось много различных общих определений хроматографии [17, 18], которые становились недостаточными после открытия принципиально новых вариантов этого процесса. В то же время некоторые из определений [19, 20] носили настолько общий характер, что к ним можно было отнести любые методы разделения смесей, включая ректификацию, дробное осаждение и пр. В большинстве определений, даже наиболее удачных [21], хроматография рассматривается как физический метод разделения компонентов

омеси, хотя ряд вариантов этого метода основан на хемосорбционных

процессах.

По мнению автора настоящей работы [22], следующее определение является достаточно общим и одновременно учитывает специфические особенности метода: хроматография — это метод разделения смеси веществ, основанный на различии в сорбционном распределении компонентов смеси между подвижной и неподвижной фазами.

В одной из первых попыток классификации хроматографических методов [23] во внимание принималась природа взаимодействия между разделяемыми веществами и сорбентом. С этой точки зрения классифицируют хроматографические методы и другие авторы [15, 24, 25]. Наряду с этим появляются системы классификации, принимающие во внимание агрегатное состояние фаз, между которыми происходит распределение разделяемых компонентов смеси [20, 21, 26].

Более полная система классификации хроматографических методов [22] должна учитывать природу процессов, вызывающих разделение компонентов смеси, агрегатное состояние фаз, технику выполнения хроматографического анализа, цель и масштабы хроматографического процесса.

В зависимости от природы атомно-молекулярного взаимодействия компонентов смеси с неподвижной фазой различают следующие виды

хроматографии.

1. Адсорбционная хроматография. Разделение компонентов основано на их различной адсорбционной способности по отношению к адсор-

бенту с высокоразвитой активной поверхностью.

2. Распределительная хроматография. Разделяются компоненты, имеющие различие в коэффициентах распределения (абсорбции) между подвижной фазой и неподвижной жидкой фазой, нанесенной на поверхность неактивного твердого носителя.

3. Ионообменная хроматография. Разделение веществ основано на различии в обменной сорбции ионов на ионообменных материалах.

4. Хемосорбционная хроматография. Основана на химических реакциях взаимодействия разделяемых компонентов смеси с неподвижной

фазой

5. Молекулярноситовое распределение компонентов смеси. Разделение основано на различной проницаемости пористых неподвижных фаз для молекул с различными размерами. Частный случай этого метода—гель-фильтрация, при которой в качестве неподвижной фазы используется

Таблица 1 Классификация хроматографических методов в зависимости от агрегатного состояния фаз

Фаза		
неподвижная	подвижная	Хроматографический метод
Твердое тело	Жидкость	Жидкостная адсорбционная хроматография Ионообменная хроматография
	Газ	Газоадсорбционная хроматография
Гель	Жидкость	Гельфильтрация или гелепроницание
Жидкость	Жидкость	Жидкостная распределительная хроматография
	Газ	Газо-жидкостная распределительная хроматогр.

высокомолекулярное вещество с определенным расстоянием между сши-

тыми макромолекулами в набухшем состоянии.

Деление хроматографических методов на эти группы носит условный характер, так как в большинстве практических методов разделение компонентов смеси происходит при одновременном действии сил различной природы.

В зависимости от агрегатного состояния подвижной и неподвижной

фаз хроматографические методы делятся на ряд групп (табл. 1).

В таблице приведена классификация только основных хроматографических методов, которые находят широкое применение при разделении смесей различных веществ.

По технике выполнения анализа различают следующие виды хрома-

тографии: на колонке, на бумаге, в тонких слоях.

1. Хроматография на колонке (колоночная хроматография). Неподвижная фаза находится в колонке, через слой неподвижной фазы пропускается подвижная фаза, содержащая разделяемые компоненты. В качестве неподвижной фазы могут применяться адсорбенты, ионообменные материалы, твердые носители со слоем неподвижной жидкости и т. д., т. е. методом колоночной хроматографии можно осуществлять все пять видов хроматографического анализа, рассмотренные выше.

В зависимости от агрегатного состояния подвижной фазы бывает жидкостная колоночная хроматография (подвижная фаза — жидкость)

и газовая хроматография (подвижная фаза — газ).

В газовой хроматографии (газо-адсорбционной и газо-жидкостной) широко применяются сложные автоматические приборы — хроматографы, которые принципиально отличаются от приборов колоночной жидкостной хроматографии. В связи с этим газовая хроматография часто рассматривается как самостоятельный метод хроматографического анализа.

В последние годы интенсивно развивается реакционная газовая хроматография, в частности пиролитическая газо-жидкостная хроматография, основанная на сочетании предварительного пиролиза нелетучих соединений с хроматографическим разделением продуктов пиролиза.

2. Хроматография на бумаге. Она представляет собой частный случай распределительной хроматографии. Неподвижной фазой служит слой жидкости, находящейся на твердом носителе — хроматографической бумаге; подвижная жидкость фильтруется по бумаге или сверху вниз (нисходящий метод), или снизу вверх (восходящий метод). Наряду с процессами распределения компонентов между двумя жидкими фазами возможны адсорбционные процессы на поверхности целлюлозных волокон бумаги.

К хроматографии близки электрофоретические методы разделения смесей. В частности, при электрофорезе на бумаге происходит разделение заряженных веществ в постоянном электрическом поле и одновре-

менно протекают распределительные процессы.

3. Хроматография в тонких слоях. Неподвижная фаза в виде тонкого слоя сорбента наносится на поверхность пластинки (как правило, стеклянной), жидкая фаза фильтруется нисходящим или восходящим методом. Этим методом возможно проведение адсорбционной, распределительной и других видов хроматографии.

В зависимости от цели анализа различают аналитическую, препаративную и промышленную хроматографии. Эти методы отличаются друг от друга техникой и масштабами хроматографического процесса. Основная цель аналитической хроматографии — качественный и количествен-

ный анализ компонентов смеси; исследуемые пробы обычно не превышают грамма. Препаративная хроматография ставит целью получение в лабораторных масштабах небольших образцов чистых веществ, обычно не более килограмма. В промышленной хроматографии на производственных установках производят очистку и выделение больших партий товарной продукции.

Выводы

1. При исследованиях в области хроматографии применяют различные принципы классификации, рассмотренные выше. При этом в основе классификации всегда лежит природа атомно-молекулярного взаимодействия между подвижной и неподвижной фазами, а также агрегатное состояние фаз.

2. При рассмотрении технических приемов хроматографии и применении этого метода для решения прикладных вопросов за основу берется классификация хроматографических методов, основанная на особенностях технического выполнения анализа. Это связано с тем, что при практическом применении хроматографического анализа возможно участие в процессах разделения сил различной природы, в связи с чем бывает трудно отнести отдельные методики к определенному типу хромато-

3. Рассмотренные общие принципы хроматографии необходимо ясно представить при практическом использовании этого удобного и эффек-

тивного метода исследования.

Литература

[1] М. С. Цвет. Тр. Варш. общ. естеств., отд. биол., 1903, 14, 20—30. (В сб.: Хроматографический адсорбционный анализ. М., 1946). [2] W. F. Wilhite, M. R. Burnell. Analys. Instrumentat., 1963, Pittsburgh, Instrum. Soc. America, 1963, 113. [3] М. С. Цвет. Физико-химические исследования хлорофияла. Адсорбция. (Пер. с нем. В сб.: Хроматографический адсорбционный анализ. М., 1946, 30.) [4] R. Kuhn, E. Lederer. Naturwissenschaften, 19, 306, (1931); Вет., 64, 1349 (1931). [5] М. Steiger, T. Reichstein. Helv. Chim. Acta, 21, 546 (1938). [6] М. С. Цвет. Вегісhte, 24, 384—393 (1906). (Пер. с нем. В сб.: Хроматографический адсорбционный анализ, М., 1946, 41). [7] А. Tiselius. Arkiv Кеті, Міпегаl., Geol., 14В, W22 (1940); 14В, W32 (1941); 15В, W6 (1941). [8] С. Классон. Адсорбционный анализ смесей. М.—Л., 1950. [9] Н. А. Измайлов, М. С. Шрайбер. Фармация, З, 1 (1938). [10] G. Schwab. Angew. Chem., 50, 546 (1937); 50, 691 (1937); 51, 709 (1938); 52, 666 (1939); 53, 39 (1940). [11] А. J. Р. Martin, R. L. M. Synge. Biochem. J., 35, 1358 (1941). [12] Discovery, 14, 1, 2 (1953). [13] А. Н. Gordon, А. J. Р. Martin. Biochem. J., 38, 224 (1944). [15] Хроматография на бумате. Под ред. И. М. Хайса и К. Мацека. М., 1962. [16] А. Т. James, А. J. Р. Martin. Biochem. J., 50, 679 (1952). [17] В. В. Рачинский. Тр. комиссин по аналит. химин, 6 (9), 21—29 (1955). [18] Ф. М. Шемякин. В сб.: Хроматография, ее теория и применение. М., 1960, 17. [19] С. Г. Мокрушин. Коллондн. ж., 19, 6. 759 (1957). [20] Э. Байер. Хроматография газов. М., 1961. [21] М. Шингляр. Газовая хроматография в практике. М., 1964. [22] Ю. И. Холькин. Хроматография в химин древесины. М., 1968. [23] Е. Н. Гапон., Т. Б. Гапон. ДАН СССР, 59, 921 (1948); 60, 817 (1948); Усп. хим., 17, 452 (1948). [24] В. В. Рачинский. Введение в общую теорию динамики и хроматографии. М., 1964. [25] В. В. Рачинский, Т. Б. Гапон. Хроматография в биологии. М., 1953. [26] К. А. Гольберт, М. С. Вигдергауз. Курс газовой хроматография в биологии. М., 1965. 1953. [26] К. А. Гольберт, М С. Вигдергауз. Курс газовой хроматографии. М., 1967.