ОБЩАЯ И ПРИКЛАДНАЯ ХИМИЯ МИНСК 1969

Н. В. ГАЛИЦКИЙ, А. И. ЛЫСЦОВ, Н. И. ЩЕРБИНА, А. П. СИДОРЕНКО, Е. В. СЕРГАЧ

ВЗАИМОДЕЙСТВИЕ ДВУХЛОРИСТОГО ХРОМА С ХЛОРИДАМИ НАТРИЯ, КАЛЬЦИЯ, МАГНИЯ, МАРГАНЦА, ЖЕЛЕЗА

При хлорировании руд, концентратов и других материалов, содержащих хром в качестве основного или примесного компонента, образуются обычно хлорный хром (CrCl₃) и хлористый хром (CrCl₂) [1—2]. Взаимодействие хлорного хрома с другими хлоридами изучено довольно подробно [2—5], сведения по системам с хлористым хромом ограничиваются подгруппой щелочных металлов [6—9].

В настоящей работе термографическими, кристаллооптическими и рентгенографическими методами исследованы системы: CrCl₂—NaCl, CrCl₂—CaCl₂, CrCl₂—MgCl₂, CrCl₂—MnCl₂, CrCl₂—FeCl₂. В последних четырех системах определено также давление насыщенных паров.

Рис. 1. Схема установки для термического анализа: 1 — сосуд Дьюара; 2 — автотрансформатор; 3 — печь трубчатая с водяным охлаждением; 4 — блок никелевый: 5 — ампула с исследуемым веществом; 6 — электронный потенциометр КВТ-бЕ; 7 — диференциальная термопара; 8 — фотоусилитель Ф-359.

Хлористый хром получали восстановлением химически чистого хлорного хрома металлическим (электролитическим) хромом при температуре 900°С в предварительно вакуумированных до 10⁻³ мм рт. ст. и затем запаянных кварцевых сосудах.

Химический анализ полученного таким образом продукта (по трем параллельным пробам) дал соотношение Cl: Cr = 1,985. Температура плавления хлористого хрома, определенная термографическим методом, равна 815°C, температура кипения, рассчитанная по давлению насыщенного пара, — 1303°C. Оба показателя хорошо согласуются с извест-

ными литературными данными [9]. Все это указывает на высокое качество полученного нами реактива. Хлориды натрия, кальция и магния получены из химически чистых реактивов путем их дополнительной переплавки (последнего в смеси с хлористым аммонием), хлориды марганца и железа — хлорированием чистых металлов. Качество всех реактивов проверено так же, как и качество хлористого хрома. Полученные хлориды измельчали, хранили, пересыпали и взвешивали в условиях, исключающих соприкосновение их с воздухом и влагой.

Термографические исследования систем проводили на установке с дифференциальной записью кривых нагревания и охлаждения сплавов (рис. 1), смонтированной на основе электронного потенциометра КВТ 6/Е и фотоусилителя Ф-359 для усиления термо-э.д.с. дифференциальной (платино-платино-родиевой) термопары. Часть термограмм снята на установке типа пирометра Курнакова. Исследуемые смеси загружали в прокаленные под вакуумом кварцевые ампулы, которые затем запаивали и помещали в печь для термографирования. Навески солей составляли 0,5 г, скорость нагревания и охлаждения — 10—20° в минуту.

t°C

800

700

A

В системе CrCl₂—NaCl изучено 14 составов (табл. 1) через 5-10 концентраций интервал мол.%. Полученные термографические данные (диаграмма строикривым охлаждения) лась по приведены на рис. 2. Из диаграммы состояния видно, что в системе CrCl₂—NaCl образуется ОДНО инконгруэнтно плавящееся при 460°C температуре соединение, соответствующее химической фор-Na₃CrCl₅. Двухлористый муле хром и Na₃CrCl₅ образуют эвтектику, плавящуюся при 435°С; 46,5 мол.% состав эвтектики: CrCl₂ и 53,5 мол. % Na₃CrCl₅.

Полученная нами фазовая диаграмма довольно близко совпадает с данными [7].

В системе CrCl₂—CaCl₂ исследовано 28 составов (табл. 2, 3); диаграмма плавкости системы

3); диаграмма плавкости системы приведена на рис. 3. Хлористый кальций кристаллизуется с большим переохлаждением, поэтому левая часть циаграммы (хромовая сторона) построена по кривым охлаждения, а правая (кальциевая сторона) — по кривым нагревания.

Из диаграммы состояния видно, что в системе CrCl₂—CaCl₂ образуется одна простая эвтектика состава: 42,0 % мол. CrCl₂ и 58,0 мол. % CaCl₂; температура плавления эвтектики 619°С. Интересно отметить, что расчетные координаты точки эвтектики на диаграмме CrCl₂—CaCl₂, полученные по уравнению Шредера (с использованием справочных данных по температурам плавления хлоридов), довольно близко совпадают с экспериментальными: расчетная температура плавления эвтектики 617,5°С, концентрация CrCl₂ в эвтектике 44,5%. Это указывает на то, чо расплав по своим свойствам приближается к идеальному раствору и из него при охлаждении кристаллизуются чистые компоненты. Теплота

47

C

	repare	papir roomie gamese .			
Состав, мол.%		Температура термических эффектов, °С			
CrCl ₂	NaCl	І эффект	ІІ эффект	ІІІ эффект	
100				815	
89,11	10,89	435	783	-	
79,81	20,19	4,38	750		
66,89	33,11	438	650	_	
62,5	37,5	440	580		
59,73	40,27	440	575	-	
55,83	44,17	440	555	_	
53,46	46,54	438	_	_	
41,98	58,02	438	450		
35,0	65,0	440	460	550	
25,55	74,45	438	460	660	
18,19	81,81	-	460	710	
7,4	92,6		460	765	
	100		-	800	

Термографические данные по системе CrCl₂-NaCl

плавления эвтектики, рассчитанная по экспериментальным данным, равна 7313,6 кал/моль (30620,5 дж/моль).

В системе CrCl₂—MgCl₂ исследовано 36 составов (табл. 4, 5). Диаграмма состояния, построенная по экспериментальным данным, приведена на рис. 4.

При нагревании и охлаждении всех составов с концентрацией хлористого магния до 50% на термограммах» наблюдаются по два терми-

Состав, мол.%		Температура термических эффектов, °С				
		be I	фект	II эффект		
CrCl ₂	' CaCl ₂	нагревание	охлаждение	нагревание	охлаждение	
88,87 [.]	11,13	615	619	790	790	
80,1	19,9	615	618	770	770	
74,41	25,59	618	618	755	755	
70,16	29,84	618	618	740	743	
64,41	35,59	618	618	725	715	
59,13	40,87	620	620	710	710	
48,88	51,12	620	620	660	663	
46,26	53,74	615	620	_	645	
40,82	59,18	618	620			
34,56	65,44	622,5	626	670	700	
24,62	75,38	620	620	710	638	
19,3	80,7	618	628	725	708	
14,4	85,6	622	628	740	730	
10,16	89,84	618	618	750	705	
9,33	90,67	620	620	755	765	
4,97	95,03	620	620	762	720	

Система CrCl2-CaCl2 (термографические данные)

Таблица 3

Данные кристаллооптических исследований системы CrCl2-CaCl2

Состав.	мол.%			
CrCl ₂	CaCl2	Фазовый состав		
88,87 74,41 70,16 59,13 48,88 46,26 44,1	$ \begin{array}{c} 11,13\\ 25,59\\ 20,84\\ 40,87\\ 51,12\\ 53,74\\ 55,9 \end{array} $	СгСl ₂ + двойная эвтектика CrCl ₂ +CaCl ₂ Уменьшение количества CrCl ₂ в сторону эвтектики Увеличение количества CaCl ₂ в этом же направлении		
41,65 40,46	58,37 59,54 }	Двойная эвтектика CrCl ₂ +CaCl ₂		
$\begin{array}{c} 36,73\\ 33,48\\ 24,62\\ 20,67\\ 19,13\\ 14,4\\ 10,16\end{array}$	63,27 65,51 75,38 79,33 80,7 85,6 89,84	CaCl ₂ +двойная эвтектика Уменьшение количества эвтектиче- ских зерен в сторону CaCl ₂ Увеличение количества зерен CaCl ₂ в этом же направлении		

ческих эффекта, при концентрациях более 50% — по одному. При нагреве сплавов левой (доэвтектической) части диаграммы переход кривой дифференциальной записи в пик на первом термическом эффекте

4 Зак. 1913.

49

происходит с плавным закруглением; в сплавах, содержащих 8—15% хлористого магния, первые эффекты нагревания и вторые охлаждения ложатся ниже эвтектической линии; указанное связывается обычно с наличием и распадом твердого раствора. По кристаллической структуре твердый раствор, очевидно, незначительно отличается от хлористого хрома и при кристаллооптических исследованиях не отличается от последнего.

В правой части диаграммы в сплавах с концентрацией 60% хлористого магния и более после их застывания наблюдается четкое расслаивание; это может свидетельствовать об ограниченной растворимости компонентов в жидком состоянии (что маловероятно для данной системы) или о ликвации одной из кристаллизующихся фаз. Рентгенографические исследования этих сплавов (табл. 5) показали, что они представляют собой твердый раствор на основе хлористого магния. Температурный интервал кристаллизации раствора очень невелик, не превышает 5°. Твердый раствор по свойствам и структуре близок к хлористому магнию, отличается от него только по показателю преломления и кое-где некоторой неоднородностью, наличием сдвойникованных зерен.

Таблица 4

Состав, мол.%		Температура термических эффектов, °С					
			Іэс	I эффект		II эффект	
	MgCl ₂	CrCl ₂	нагревание	охлаждение	нагревание	охлаждение	
	8,36	91,64	785	807,5		695	
	9,67	90,33	785	800		695	
	10,65	89,35	690	702	775	789	
	15,39	84,61	710	708	780	795	
	18,6	81,4	_	710	790	793	
	31,76	68,24	710	715	760	773	
	41,43	58,57	708	710	765	750	
	48,87	51,13	708	723	_	_	
	52,63	47,37	703	712,5		_	
	55,78	44,22	708	712,5	725		
	61,97	38,03	710	713	. 	_	
	62,38	37,62	705	715	785	775	
	64,84	35,16	710	715	735	_	
	65,38	34,66	710	715	· . —	_	
	66,06	33,94	710	715		·	
	68,31	31,19	710	715	_		
	72,33	27,67	708	715			
	75,63	24,47	710	715	· · · ·		
	80,11	19,89	705	712,5	_	_	
	90,19	9,9	710	715			
	92,57	7,43	710	715			
	95,06	4,94	710	715	0:-		
	97,42	2,58	703	715	10-		
	40,39	59,61	705	712,5	752,5	765	
	53,45	46,55	710	712,5	727,5	_	

Система CrCl₂-MgCl₂ (термографические данные)

ВЗАИМОДЕИСТВИЕ ДВУХЛОРИСТОГО ХРОМА С ХЛОРИДАМИ

Таблица 5

51

Состав, мол.%			
CrCl ₂	MgCl ₂	Фазовый состав по кристал- лооптическим исследованиям	Фазовый состав по рентгенографичес- ким исследованиям
90,33 89,35 84,61 81,4	9,67 10,65 15,39 18,6	CrCl ₂ +двойная эвтектика. (Воз- можно твердый раствор+эвтекти- ка.) Уменьшение кол-ва CrCl ₂ в сторону эвтектики. Увеличение	CrCl ₂
65,7 58,5 51,13 50,59	34,3 41,4 48,87 49,41	кол-ва эвтектических зерен в этом же направлении	Твердый раствор на основе MgCl ₂ +CrCl ₂
47,37 46,55 44,22	52,63 53,45 55,78	Эвтектическая область. Представле- на зернами эвтектики	Высокоупорядоч. твердый раст- вор на основе MgCl ₂
42,04 36,99 35,16 34,66	57,96 63,01 64,84 65 34	Неравновесный твердый раствор на основе MgCl ₂	Твердый раствор на основе MgCl ₂
33,94 27,67	66,06 72,33	Твердый раствор на основе MgCl ₂	Твердый раствор на основе MgCl ₂ +MgCl ₂
24,47 19,89 9,9 7,43 4,94	75,63 80,11 90,19 92,42 95,06		MgCl ₂

Данные кристаллооптических и рентгенографических исследований системы CrCl₂---MgCl₂

Пересечение линий ликвидуса двух твердых растворов дает эвтектическую точку с координатами: температура плавления $712\pm2^{\circ}$ С, содержание $CrCl_2 - 47,37\%$. Линия *MEN* на диаграмме рис. 4 является линией эвтектики, состоящей из двух твердых растворов. Положение точки *N* на диаграмме определено по данным кристаллооптического анализа; более точные координаты точки определить не удалось из-за малого температурного интервала кристаллизации твердого раствора и распространения его почти в направлении линии эвтектики. Эвтектика состоит преимущественно из фазы, по свойствам приближающейся к твердому раствору на основе хлористого магния. Сростков и прорастаний CrCl₂ в этой фазе не имеется; хлористый хром наблюдается в ней в виде единичных мелких скоплений. Отсутствие характерной эвтектической структуры можно объяснить сравнительно малым содержанием в эвтекгической смеси твердого раствора на основе двухлористого хрома.

В системах CrCl₂—MnCl₂ и CrCl₂—FeCl₂ исследовано по 20 составов (табл. 6—9). Диаграммы состояния этих систем (рис. 5, 6) оказались одинаковыми и незначительно отличаются от рассмотренной ранее диаграммы CrCl₂—MgCl₂. Это можно объяснить, видимо, близостью указанных хлоридов по основным физическим свойствам и характеру кристаллической структуры (табл. 10).

В системах при охлаждении образуется по два твердых раствора с ограниченной взаимной растворимостью компонентов; из расплавов кри-4*

сталлизуются растворы, обогащенные хлористым хромом. Граница растворимости марганца и хлористого железа в твердом хлористом хроме

(раствора α) указана ориентировочно по немногочисленным термографическим данным. Линии солидуса твердых растворов β на диаграммах нанесены условно; точное положение их определить не удалось из-за

Таблица 6

Состав, мол.%		Температура термических эффектов, °С				
5/12	1	I əd	І эффект		II эффект	
MnCl ₂	CrCl ₂	нагревание	охлаждение	нагревание	охлаждение	
1,94	98,06	808	814	833	790	
5,71	94,29	795	803	808		
7,84	92,16	785	800	817	785	
12,5	87,5	650	658	770	790	
22,47	73,53	655	660	770	772,5	
32,93	67,07	655	660	705	750	
40,12	59,88	657,5	660	712,5	728	
51,8	48,2	660	667,5			
57,46	42,54	650	660	-		
59,91	40,09	660	665	690	675	
65,2	34,8	650	660			
70,29	29,71	655	662,5	-	_	
72,43	27,57	653,5	665	-		
78,53	21,47	653,5	660	-		
84,64	15,36	652,5	657,5	665		
90,2	9.8	650	655	680, 685	_	
94,74	5.26	650	653,5	677, 5		
97.34	2,66	645	652,0	_	-	

Система CrCl2-MnCl2 (термографические данные)

Данные кристаллооптических исследований системы CrCl2-MnCl2

Состав, мол.%		Ī	
CrCl ₂	MnCl ₂		Фазовый состав по кристаллооптическим исследованиям
98,06 94,29 92,16	1,94 5,71 7,84	}	CrCl ₂ в виде призматических зерен (возможно твердый раствор на основе CrCl ₂)
97,5 77,53 67,07 59,88 48,2	12,5 22,47 32,93 40,12 51,8		Хлорид хрома-предельно насыщен- ный твердый раствор на основе хлорида марганца Увеличение количества зерен твер- дого раствора в сторону перитек- тики
42,54 29,71	57,46 70,29	}	Предельно насыщенный твердый раствор на основе MnCl ₂
27,57	72,43		Проба разложилась
21,47 15,36 9,8 5,26 2,66	78,53 85,64 90,2 94,74 97,34		Твердый раствор на основе MnCl ₂

Таблица 8

Система CrCl₂--FeCl₂

2 (термографические данные)

Состав, мол.%		Температура термических эффектов. °С			
		þe I	фект	II эффект	
CrCl ₂	FeCl ₂	нагревание	охлаждение	нагревание	охлаждение
$\begin{array}{r} 90,39\\ 89,07\\ 86,83\\ 84,43\\ 71,84\\ 71,46\\ 66,3\\ 61,9\\ 58,89\\ 57,4\\ 55,77\\ 46,64\\ 44,1\\ 39,96\\ 36,65\\ 27,23\\ 24,99\\ 9,85\\ 4,76\\ 2,57\\ \end{array}$	$\begin{array}{c} 9,61\\ 10,93\\ 13,17\\ 15,57\\ 28,16\\ 28,54\\ 33,7\\ 38,1\\ 41,11\\ 42,6\\ 44,23\\ 53,36\\ 55,91\\ 60,04\\ 60,35\\ 72,77\\ 75,01\\ 90,15\\ 95,24\\ 97,43\\ \end{array}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} 680\\ 665\\ 680\\ 682,5\\ 675\\ 680\\ 680\\ 680\\ 680\\ 680\\ 680\\ 680\\ 680$	765 775 745 765 730 735 740 720 703 705 705 705 715 710 710 685, 715 700 712,5 710 712,5 710 705 705	790, 795 802 780 768,5 740-745 730 735-718 710 705 700 675 645

Состав, мол.%			Changen in another the	
CrCla	FeCl ₂	Фазовый состав по кристал- лооптическим исследованиям	рентгенографическим исследованиям	
90,39	9,61	CrCl ₂ +предельно насыщенный твер-		
89,07	10,93	Увеличение количества зерен твер-		
86,83	13,17	дого раствора по направлению к перитектике и уменьшение коли-		
84,43	15,57	чества зерен хлорида хрома		
71,46	28,54		T.	
66,3	33,7 /			
58,89	41,11			
55,77	44,23			
46,64	53,36	Перитектическая область	Твердый раствор	
44,1	55,9		на основе FeCl ₂	
39,96	60,04	Неравновесный твердый раствор на	Твердый раствор	
24,99	75,01)		FeCl ₂	
4,76	95,24	Твердый раствор на основе FeCl ₂	FeCl ₂	
2,57	97,43			

Данные кристаллооптических и рентгенографических исследований системы СгСl₂—FeCl₂

очень малого температурного интервала кристаллизации расплавов. Линии $MN\Pi$ на рис. 5 и 6 — линии перитектики, соответствующие температурам $660 \pm 1^{\circ}$ в системе с $MnCl_2$ и $680 \pm 1^{\circ}$ в системе с $FeCl_2$. Максимальная растворимость хлористого хрома в твердом хлористом марганце и твердом хлористом железе определена по кристаллооптическим исследованиям и составляет соответственно 41-43% и 44-47%.

Измерение давления насыщенного пара в системах хлоридов проводили методом точек кипения [13]; общее давление в приборе определяли с помощью ртутного манометра МЧР-3 с точностью до $\pm 0,5$ мм рт. ст.; температуру измеряли сдвоенной платино-платино-родиевой термопарой с точностью $\pm 0,5^{\circ}$.

Для исследований в каждой системе было приготовлено по 5—8 сплавов, концентрация хлористого хрома в которых изменялась от 0 до 100% через каждые 12—25%.

Tab.nuga 10

Характеристики кристаллических решеток, $T_{\rm II,I}$ и $T_{\rm KHII}$ хлоридов

10-12 Лите-ратура \$ * *Т*кип, °C 1303 2000 1418 1026 1190 rnn, "C 815 772 714 650 677 Энергия кристаллич. решетки, толь 600 616 537 599 600 Радиус иона, А 0,65-0,82 0,75-0,91 0,47-0,79 0,52 1,05-Радиус атома, А 1,249 1,974 1,599 1,366 1,141 33°-36' 34°--35′ 33°--33' 00 ď, Параметры решетки 4,208 0 3,48 6,443 0 5,99 1 1 6,253 6,233 6,213 ø 6,65 6,212 Тип решетки Гексиго-наль-ная Орто-ромби-ческ. Соеди. нение MgCl₂ CaCl₂ MnCl₂ CrCl₂ FeCl₂

Давление пара над расплавом CrCl₂—CaCl₂ измерено в температурном интервале 1050—1100°С. Результаты измерений представлены на рис. 7, а и в координатах

$$lgP_{obm} - \frac{110^4}{T^{\circ}K}$$
 на рис. 7,6.

Из рисунков видно, что линии общего давления насыщенного пара для расплавов различного состава располагаются между линиями чис-

Рис. 7. Давления пара в системе CrCl₂ — CaCl₂: 1 — CrCl₂; 2 — 27,14 мол.% CaCl₂; 3 — 50,65 мол.% CaCl₂; 4 — 75,51 мол.% CaCl₂.

тых компонентов, а взаимное расположение их соответствует последовательности изменения концентрации расплавов; давление пара в системе имеет отрицательное отклонение от закона Рауля, что указывает на возможную ассоциацию в расплаве. Зависимость давления от температуры для всех составов хорошо описывается уравнением типа lgP =

 $=-\frac{A}{T}+B$ и в полулогарифмических координатах $\lg P=f\left(\frac{1}{T}\right)$ пред-

ставляет прямую линию.

Исходя из последнего уравнения, мы вычислили термодинамические характеристики процесса испарения, приведенные в табл. 11. Отсутствие резких изменений в рассматриваемых термодинамических характеристиках, а также общего давления пара в системе указывает на то, что в данной системе отсутствуют сложные комплексы образования как в конденсированной, так и в парообразной фазах.

Более сложные зависимости получаются в системе CrCl₂—MgCl₂ (рис. 8). Общее давление пара над составами, обогащенными хлористым магнием, почти соответствует закону Рауля; над составами, обогащенными по хлористому хрому до 75—80%, отрицательное отклонение увеличивается до образования минимума. Это может указывать на наличие химических соединений или превращений компонентов в парообразной и жидкой фазах, что легко выяснить дополнительными исследованиями. Отклонение давления от закона Рауля увеличивается с ростом температуры.

Так же как и в предыдущей системе, полученные кривые в координатах $\lg P = f\left(\frac{1}{T}\right)$ дают прямую линию.

1 — CrCl₂; 2 — 24.71 мол. % MnCl₂; 3 — 49.99 мол. % MnCl₂: 4 — 73,08 мол. % MnCl₂; 5 — MnCl₂.

В системах CrCl₂—MnCl₂ и CrCl₂—FeCl₂ общее давление пара (рис. 9 и 10) имеет положительное отклонение от закона Рауля, увеличивающееся с ростом температуры и увеличением концентрации MnCl₂ до 75%. В остальном системы аналогичны двум предыдущим.

57

Полученные данные позволяют представить поведение хлоридов хрома, натрия, кальция, магния, железа, марганца при совместном их присутствии в металлургических агрегатах, например в шахтных хлораторах титанового производства.

Литература

[1] И. А. Магидсон. Автореф. канд. дисс. М., 1963. [2] Н. В. Галицкий. Канд. дисс. Л., 1964. [3] С. Н. Школьников. Изв. высш. уч. зав. Цвет. мет., 2, 651 (1962). [4] Б. Г. Коршунов, Б. Я. Раскин. ЖНХ, 7, 1736 (1962). [5] С. М. Cook. J. Jnorg., and Nuclear Chem. 25, 123 (1963). [6] Н. А. Doerner. U. S. Bur of mines, Technical Paper N 514, (1931). [7] I. C. Shiloff, J. Physic. Chem., 64, 1566 (1960). [8] R. Gret., R. Grehm. Chimia, 16, 9, 289 (1962). [9] J. Sheifert, K. Klavtk. Z. anorg. allg Ch., 74, 334 (1964). [10] Л. И. Миркин. Справочник по рентгеноструктурному анализу поликристаллов. М., 1961. [11] Н. М. Барон и др. Краткий справочник физико-химических величин. М.-Л., 1965, стр. 123. [12] М. Х. Карапетьянц. ЖФХ, 28, 1136 (1965). [13] Г. И. Новиков, О. Г. Поляченок. ЖНХ, 6, 1951 (1961).