В.Б. Павлов, канд. физ.-мат. наук, доц. (ИХТИ ФГБОУ ВО «УГНТУ», г. Стерлитамак, Российская Федерация)

ПРИМЕНЕНИЕ ПЛАЗМЕННОЙ ПОЛИМЕРИЗАЦИИ ДЛЯ ПРИДАНИЯ ПОВЕРХНОСТИ МАТЕРИАЛОВ СПЕЦИФИЧЕСКИХ СВОЙСТВ

Изменение тонкого поверхностного слоя полимера под действием плазмы включает не только образование новых функциональных групп, двойных связей и сшивок, но и конформационные изменения, например, изменение степени кристалличности. При этом в зависимости от условий обработки может наблюдаться как аморфизация, так и кристаллизация поверхностного слоя [1].

Так, обработка полимерного материала в плазме H_2 , N_2 , NH_3 незначительно увеличивает содержание аморфной фазы, в то время как действие кислородной плазмы приводит к возрастанию степени кристалличности. Обработка полимерной пленки в плазме чистого аргона приводит к кристаллизации, в то время как присутствие в плазмообразующем газе кислорода вызывает аморфизацию поверхностных слоев. Увеличение содержания кристаллической фазы может приводить к увеличению прочности полимерных волокон. При этом плазма не только по-разному воздействует на области полимеров, различающиеся кристалличностью и надмолекулярной структурой, но и может оказывать влияние на фазовые переходы в поверхностных слоях полимера.

Активные частицы плазмы могут вызывать химические реакции лишь в весьма тонких слоях полимера. Исключением, вероятно, может быть действие озона О₃, который способен диффундировать на большие глубины. Положительные ионы бомбардируют поверхность с заметной кинетической энергией, приобретенной при прохождении электрического поля в приповерхностном слое. Молекулярные и атомарные частицы ответственны как за деструкцию (травление) поверхностных слоев полимера, так и за образование новых функциональных групп в поверхностном слое, и могут радикально менять поверхностные характеристики полимера. Объемные характеристики полимерного образца, как правило, остаются неизменными.

При наличии в газоразрядной плазме углеродсодержащих молекул на контактирующих с плазмой поверхностях образуется пленка, отличающаяся при соответствующем режиме процесса рядом полезных свойств, в том числе упрочняющая поверхность обрабатываемых материалов [2].

Основными механизмами процесса плазменной полимеризации можно считать следующие:

- 1. Адсорбционный механизм. Рассматривает в качестве основной стадии процесса адсорбцию осколочных молекул на поверхности. Адсорбированные молекулы диссоциируют под действием ионно-электронных ударов, а рекомбинация фрагментов ведет к росту полимерной цепи. К макромолекулам могут присоединяться и углеводородные ионы из объема.
- 2. Свободнорадикальный механизм. Предполагается, что инициирование происходит в результате диссоциации осколочных молекул в объеме. Развитие и обрыв цепи идут на поверхности по свободно радикальному механизму.
- 3. Механизм, в котором используется представление о двух стадиях инициирования полимеризации. Первая - это генерация ионов и радикалов в плазме, вторая - создание центров роста в поверхностном слое образца, в основном при электрон-ионной рекомбинации, и рост пленки в реакциях присоединения углеводородных радикалов из газовой фазы к центрам роста. Одна из важных особенностей модели представление о слое растущей пленки на поверхности образца, в котором происходят основные реакции [3].

Осаждение плазменного полимера на поверхность материалов является одним из наиболее эффективных и радикальных методов поверхностной модификации образцов.

Плазменная полимеризация представляет собой процесс, при котором активные частицы, участвующие в полимеризации, образуются в плазме в результате столкновений электронов с молекулами, атомами и радикалами рабочих газов [4]. Неудивительно при этом, что полимерные пленки могут быть синтезированы в плазме газов, обычная химическая полимеризация которых невозможна. Изменяя химический состав газов — «мономеров» и условия полимеризации, можно получить пленки с явно выраженными гидрофильными или гидрофобными свойствами, покрытия разной степени твердости без микропор или с сильно развитой пористой поверхностью.

Основными применениями плазменных полимеров являются:

- гидрофильные или гидрофобные покрытия металлов и диэлектриков;
 - антикоррозионные покрытия металлов;
- пленки, служащие интерфейсом, обеспечивающим хорошую адгезию между материалом и последующими покрытиями.

Основными достоинствами плазменной полимеризации перед обычной химической являются возможность совмещения нескольких

технологических операций, таких как первичная очистка поверхности материалов, нанесение плазменного полимера и модификация поверхности полимера, на одной установке, и отсутствие жидких токсичных отходов.

На рисунке показана структура покрытий, полученных при различных условиях нанесения [5].

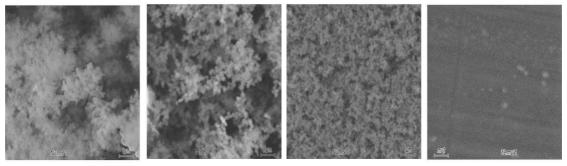


Рисунок - Структура покрытия в зависимости от условий его нанесения

В зависимости от ингредиентов, применяемых в процессе образования плазменного полимера, его свойства могут быть как гидрофильными, так и гидрофобными. Получаемые гидрофильные покрытия могут быть использованы для обработки теплообменного оборудования. Так, по результатам сравнительных испытаний, у обработанного экспериментального образца кондиционера сплит-систем с внутренним воздухообрабатывающим блоком (с модифицированным покрытием теплопередающих поверхностей) производительность по холоду выше на 38%, а потребляемая мощность вентилятора ниже на 25%, чем у серийного кондиционера сплит-систем.

ЛИТЕРАТУРА

- 1. Ясуда X. Полимеризация в плазме. M.: Мир, 1988. 367c.
- 2. Ткачук Б. В., Колотыркин В. М. Получение тонких полимерных пленок из газовой фазы. М.: Химия, 1987. 158с.
- 3. Брук М. А., Павлов С. А. Полимеризация на поверхности твердых тел. М.: Химия, 1990.-130c.
- 4. Вавилин К. В., Кралькина Е. А., Павлов В. Б. и др. Способ плазменного осаждения полимерных покрытий и установка для его осуществления // Патент РФ № 2382119.
- 5. Вавилин К. В., Кралькина Е. А., Павлов В. Б. Технология нанесения функциональных гидрофильных пленочных покрытий // VII Всероссийская конференция «Низкотемпературная плазма в процессах нанесения функциональных покрытий», Казань, Россия, 4—7 ноября 2015.